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Abstract: The effect of geometric imperfections and viscous dampimghe type of non-linearity
(i.e. the hardening or softening behaviour) of circular plated sinallow spherical shells with free
edge, is here investigated. The Von Karméan large-defledtienry is used to derive the contin-
uous models. Then, non-linear normal modes (NNMs), are tmepredicting with accuracy the
coefficient, the sign of which determines the hardening ftesing behaviour of the structure. The
effect of geometric imperfections, unavoidable in realtsyss, is studied by adding a static initial
component in the deflection of a circular plate. Axisymneeas well as asymmetric imperfections
are investigated, and their effect on the type of non-lihgaf the modes of an imperfect plate, is
documented. Transitions from hardening to softening biel@are predicted quantitatively for im-
perfections having the shapes of eigenmodes of a perfaet glae role of 2:1 internal resonance in
this process is underlined. When damping is included in &heutation, it is found that the softening
behaviour is generally favoured, but its effect remainstkoh

Keywords:hardening/softening behaviour, spherical shells, cacplates, geometric imperfections,
damping.

1 Introduction

When continuous structures such as plates and shells unlZegg amplitude motions, the geo-
metrical non-linearity leads to a dependence of free amih frequencies on vibration amplitude.
The type of non-linearity describes this dependency, wienh be of the hardening type (the fre-
guency increases with amplitude), or of the softening tyipe {requency decreases). A large amount
of litterature is devoted to predicting this type of nondarity for continuous structures, and espe-
cially for structures with an initial curvature such as astlor shells, because the presence of the
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guadratic non-linearity makes the problem more difficulétdve. On the other hand, the hardening
behaviour of flat structures such as beams and plates is dyadssablished fact, on the theoretical
as well as the experimental viewpoint, seg. [1, 2, 3, 4, 5, 6]. The presence of the quadratic
non-linearity may change the behaviour from hardening ftesng type, depending on the relative
magnitude of quadratic and cubic non-linear terms.

Among the available studies concerned with this subjedteql of them that were published
before 1992 could not be considered as definitive since teagmlly restrict to the case of a single-
mode vibration through Galerkin method, see for example8[7] for shallow spherical shells,
or [10] for imperfect circular plates. Unfortunately, it idbeen shown by a number of more re-
cent investigations that too severe truncations lead tmewus results in the prediction of the type
of non-linearity, see for example [11, 12], or the abundéterature on circular cylindrical shells,
where the investigators faced this problem for a long ting 4, 15, 16, 17, 18]. As a consequence,
a large number of modes must mandatory be kept in the triorcafithe Partial Differential Equa-
tions (PDEs) of motion, in order to accurately predict theetyf non-linearity. Recent papers are
now available where a reliable prediction is realized, fog tase of buckled beams [19], circular
cylindrical shells [20], suspended cables [21] and shalipherical shells [22].

However, these last studies are restricted to the case td#qgbestructures, and the damping is
neglected in the computations; and both of them have an idkien the type of non-linearity, so
that a complete and thorough theoretical study that coulthipéied to real structures need to address
the effect of imperfections and damping. The geometric ifigations have a first-order effect on the
linear as well as the non-linear characteristics of stmasuA large amount of studies are available,
where the effect of imperfections on the eigenfrequenamsan the buckling loads, are generally
addressed, see for example [23, 24, 25, 26, 27, 28] for treeafasrcular cylindrical shells, [29] for
shallow cylindrical panels, [30] for the case of rectanguliates. Non-linear frequency-responses
curves are shown in [31, 32] for clamped circular plates, B8 35] for rectangular plates, [36]
for circular cylindrical shells, and [37] for circular cyldrical panels. Even though the presence
of geometric imperfection has been recognized as a majoorfalcat could make the hardening
behaviour of the flat plate turn to softening behaviour forraperfection amplitude of a fraction of
the plate thickness [10, 38], a quantitative study, whiamasrestricted to axisymmetric modes and
that does not perform too crude truncations in the Galerkpaasion, is still missing.

To the authors’ knowledge, the role of the damping in the jotexh of the type of non-linearity
has been only recently detected as an important factor thdtl change the behaviour from hard-
ening to softening type [39]. In particular, it is shown irB[3n a simple two degrees-of-freedom
(dofs) system, that the damping generally favours the swftebehaviour. The aim of the present
study is thus to apply this theoretical result to the pratttase of a damped shallow spherical shell,
SO as to quantitatively assess the effect of structural dagngf the viscous type on the type of
non-linearity of a two-dimensional vibrating structure.

The article is organized as follows. In section 2, local émues and boundary conditions for
an imperfect circular plate with free edge, are given. Thea method used for computing the
type of non-linearity is explained. Section 3 investigatesy typical imperfections may turn the
hardening behaviour of flat plates to softening behaviowar@itative results are given for selected
imperfections having the shape of eigenmodes of the pestaatture. Section 4 is devoted to the
effect of viscous damping. The particular case of a sphiarigaerfection is selected, and the results
are shown for three different damping dependances on frexyue
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2 Theoretical formulation

2.1 Local equations and boundary conditions

A thin plate of diamete2a and uniform thickness is considered, witth << «a, and free-edge
boundary condition. The local equations governing thedamplitude displacement of a perfect
plate, assuming the non-linear Von Karman strain-disptesd relationship and neglecting in-plane
inertia, are given for example in [40, 5]. An initial impect#on, denoted byuy(r, ) and associated
with zero inital stresses is also considered, see Fig. 1shhpe of this imperfection is arbitrary, and
its amplitude is small compared to the diameter (shallowmmggion): wq(r,0) << a . The local
equations for an imperfect plate deduce from the perfea pék 18, 42]. Withw(r, 6, t) being the
transverse displacement from the imperfect position df tles equations of motion write:

DAAw + phw = L(w, F') + L(wg, F) — cw, (1a)
Eh
AAF = — [L(w,w) + 2L(w, wy)], (1b)
where D = —Z1° _ s the flexural rigidity, A stands for the laplacian operateraccounts for

12(1-v2) : : ) ) : -
structural damping of the viscous typE,is the Airy stress function, and is a bilinear operator,

whose expression in polar co-ordinates reads:

L(w,p):w7rr(;+ﬁ)+Fw(w_7+w>_2<w,e_%>(79__,0), @
T r

r2

(@) (b) (©) '\,V,/

Figure 1: (a) Top view and (b) cross-section of an imperfacidar plate of radius: and thickness
h. (c) The particular case of a spherical imperfection, watlius of curvature?.

The equations are then written with non-dimensional vdestby introducing:

r=ar, t=a’\/ph/Dt, w=hw, wy=hw (3)
F=EWF, c=][Eh/a*|\/ph/Dec. (4)

As non-dimensional equations will be used in the remainélénestudy, overbars are now omitted
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in order to write the dimensionless form of the equations ofion:
AAw + @ = € [L(w, F) + L(wy, F') — cu], (5a)

AAF — —% (L(w, w) + 2L(w, wy)] (5b)

wheree = 12(1 — 1/?).
The boundary conditions for the case of a free edge writepmaimensional form [5]:

ET+E99:0, ETQ+E9:O, at r=1 (6a)
W W, +Frwe =0, at r=1 (6b)
W FWop — Wy + (2—V)wpgp — (3—1v)wey =0, at r=1 (6¢)

In order to discretize the PDEs, a Galerkin procedure is ugedthe eigenmodes can not be
computed analytically because the shape of the imperfedsi@rbitrary, the eigenmodes of the
perfect plateV,(r, #) are selected as basis functions. Analytical expressionB,0f, §) involve
Bessel functions and can be found in [5]. The unknown digpteent is expanded with:

+o0o
w(r, 0, t) = Z Qp(t) \ij(rv 9)7 (7)
p=1

where the time functionsg, are now the unknowns. In this expression, the subsgrimfers to

a specific mode of the perfect plate, defined by a codple:), wherek is the number of nodal
diameters and the number of nodal circles. ¥ # 0, a binary variable is added, indicating the
preferential configuration considereslir{e or cosinecompanion mode). Inserting the expansion
(7) into Egs. (5), and using the orthogonality propertieshaf expansion functions, the dynamical
equations are found to be, foral=1... N:

+0o0 “+00 +oo
Gy + 28pwpdy + € Z ;g + Z Bhqiq; + Z Ffjqu'q]‘Qk =0. (8)

i=1 ij=1 i,j,k=1

Linear coupling terms between the oscillator equationspaesent, as the natural modes have not
been used for discretizing the PDEs. Analytical expressidthe coupling coefficient(sy;, 57, Ffjk)
are given in [42]. The generic viscous damping terof Eq. (5a) has been specialized in the dis-
cretized equations so as to handle the more general case oflal miscous damping term of the
form 2¢,w,q,, whereg, is the damping factor and, the eigenfrequency of mode On the other
hand, external forces have been cancelled, as the remaihither study will consider free vibrations
only.

In order to work with diagonalized linear parts, the matrixeayenvectors of the linear part
L = [a}],;, is numerically computed. A linear change of co-ordinagepriocessedg = PX,
whereX = [X ... Xy|T is, by definition, the vector of modal co-ordinates, avds the number of
expansion function kept in practical application of the &lin’s method. Application oP makes

the linear part diagonal, so that the discretized equatdnsotion finally writesV p = 1... N:

N N
X+ 26w, X, + 02X, e | Y gh XX+ Y Wy XXX | = 0. 9)

i.j=1 i k=1
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The temporal equations (9) describe the dynamics of an ifegtecircular plate. The type of
non-linearity can be inferred from these equations. Uniaately, too severe truncations in (8)g.
by keeping only one dof{ = 1) when studying the non-linear behaviour of tht& mode, lead
to incorrect predictions. Non-linear normal modes (NNM#&goa clean framework for deriving a
single oscillator equation capturing the correct type affioearity [12]. This is recalled in the next
section, where the analytical expression of the coeffidetating the type of non-linearity is given.

2.2 Typeof non-linearity

Non-linear oscillators differ from linear ones by the fremey dependence on vibration ampli-
tude. The type of non-linearity defines the behaviour, wisih be of the hardening or the softening
type.

As shown in [12], NNMs provides an efficient framework for pesly truncating non-linear
oscillator equations like (9) and predict the type of noredrity (hardening or softening behaviour).
The method has already been successfully applied to theotaselamped shallow spherical shells
in [22]. The main idea is to derive a non-linear change of adirmtes, allowing one to pass from
the modal X, co-ordinates to new-defineabrmal co-ordinatesi,, describing the motions in an
invariant-based span of the phase space. The non-lineagela co-ordinates is computed from
Poincaré and Poincaré-Dulac’s theorems, by successiméneliion of non-essential coupling terms
in the non-linear oscillator equations Formally, it reads

N

N
X, =R, +ZZ A RiR; +V0,5:8,) + > ) RS,

i=1 j=1

N N N
+3 3 (M RiR; Ry + 57,,,5:5,5%)
=1 j>i k>j
N N N
+> Z S (SR R + uly RiS;S) (10a)
i=1 j=1 k>j

N N N N
+ZZ%RR +B55iS;) + > AL RS,

i=1 j>i i=1 j=1

N N N

i=1 j>i kZJ

N N N

+ 3 (VhSiR Ry + (1 RiS; Sk) (10b)

1=1 j=1 k>j
Athird-order approximation of the complete change of cdimates IS thus computed. The analytical
expressmns of the mtroduced coefﬁmet{uﬁﬁ, L e St b, and

{ad; Bl Yigs Mg Higro Vigks G + @re notgiven here for the sake of brevity. The interestedeea
may find them in [12] for the undamped case, and in [39] for thmped case.

Once the non-linear change of co-ordinates operated, ptopecations can be realized. In
particular, keeping only the normal co-ordinatgs allows prediction of the correct type of non-
linearity for thep'” mode. The dynamics onto tp& NNM reads:

Ry 4+ w2R, + 26w,y + (eht, + AP YRS+ B R,R2 4+ CP R:R, =0, (11)

ppp PIUP) ppp ppp~ P
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whereAgm,, Py andCP are new coefficients coming from the change of co-ordinafiéseir
expressions |nvolve the quadratic coefficiefyé } only, together with some of the transformation

coefficients{a? .} from Eqgs (10) [39]:

Appp = € Z Ip1Opp T Z glp pp (12a)

i 2]7 ij

1> 1<i
N _
_ l l
ngp Z gglbpp + Z gll;bpp ’ (12b)
Li>1 1<i _
N
Cgpp - Z 9pi + Z glp pp : (12C)
L 1> 1<i

The asymptotic third-order approximation of the dynaminmothepth NNM given by Eq. (11)
allows one to accurately predict the type of non-linearitynmde p. A first-order perturbative
development from Eq. (11) gives the dependence of the maatioscillation frequenay,;, on the
amplitude of vibratioru by the relationship:

wnr = wy(1+ Tpa2), (13)

wherew, is the natural angular frequency. In this expressigris the coefficient governing the type
of non-linearity. If7,, > 0, then hardening behaviour occurs, whergégas< 0 implies softening
behaviour. The analytical expression fGywrites [12, 22]:

1
T, = [3(AL + eh?

8 w Q2 ppp ppp

) +w2BP ], (14)

Finally, the method used for deriving the type of non-lingazan be summarized as follows. For
a geometric imperfection of a given amplitude, the diseedion leading to the non-linear oscillator
equations (9) is first computed. The numerical effort asgedi to this operation is the most im-
portant but remains acceptable on a standard computer. theeron-linear change of co-ordinates
is computed, which allows derivation of th&  and BY  terms occuring in Eq. (14), the sign
of which determines the type of non-linearity. Numericaduks are given in the next section for
specific imperfections.

3 Effect of imperfections

This section is devoted to numerical results about the effidgpical imperfections on the type of
non-linearity of imperfect plates. Two typical imperfexts are selected. The first one is axisymmet-
ric and has the shape of mode (0,1), the second one has thedttap first asymmetric mode (2,0).
Consequently, damping is not considered, so that in eacitiequve haveyY p = 1...N, ¢, = 0.
The study of the effect of damping will be done separatelyiaqmbstponed to section 4.

3.1 Axisymmetric imperfection

In this section, the particular case of an axisymmetric irfg@ion having the shape of mode
(0,1) (.e. with one nodal circle and no nodal diameter), is considelidw expression of the static
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deflection writes:

wo(r) = apn¥on(r), (15)
where ¥, 1)(r) is the mode shape, depending only on the radial co-ordina@® a consequence
of axisymmetry, andi, 1y the considered amplitude. The mode shdpg)(r) depends on Bessel
function [5], and is shown in Fig. 2. The eigenmode is noreeliso thayo1 \If%o’l)(r)dr =1.

(@) (b)

Figure 2: (a) Three-dimensional view and (b) cross-sectibthe circular plate with geometric
imperfection having the shape of the first axisymmetric mo#le non-dimensional quantities are
useda = 1 and the amplitude ;) of the imperfection is made non-dimensional with respethéo
thicknessh.

Fig. 3 shows the effect of the imperfection on the eigenfesges, for an imperfection ampli-
tude from O (perfect plate) ttOh. It is observed that the purely asymmetric mo¢les)), having no
nodal circle and: nodal diameters, are marginally affected by the axisymimetiperfection. The
computation has been done by keeping 51 basis functionsiypasymmetric modes from (2,0) to
(10,0), purely axisymmetric modes from (0,1) to (0,13) anged modes from (1,1) to (6,1), (1,2),
(2,2), (3,2) and (1,3). More details and comparisons witlhuaerical solution based on finite ele-
ments are provided in [42, 43]. The slight dependence oflpagymmetric eigenfrequencies on an
axisymmetric imperfection has already been observed ihyAih the case of the shallow spherical
shell.

First, the effect of the imperfection on the axisymmetricdes (0,1) and (0,2) is studied. In this
case the problem is fully axisymmetric so that all the trdimces can be limited to axisymmetric
modes only, which drastically reduces the numerical burddre result for mode (0,1) is shown in
Fig. 4. Itis observed that the huge variation of the eigenfesncy with respect to the amplitude of
the imperfection results in a quick turn of the behaviounirthe hardening to the softening type,
occuring for an imperfection amplitude of, ;) = 0.38:. This small value has direct implication for
the case of real plates. As the behaviour changes for adraofithe plate thickness, it should not be
intriging to measure a softening behaviour with real pldtaging small imperfections. This result
can also be compared to an earlier result obtained by Hui [Athough Hui did not study free
edge boundary condition, he reported a numerical resuth®icase of simply supported boundary
conditions, where the behaviour changes for an imperfeaiplitude of 0.28. The second main
observation inferred from Fig. 4 is the occurrence of 2:&iinal resonance between eigenfrequen-
cies, leading to discontinuities in the coefficiehy ;) dictating the type of non-linearity. This fact
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Figure 3: Non-dimensional natural frequencigs ) of the imperfect plate versus the amplitude of
the imperfection having the shape of mode (0,1).
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Figure 4: Type of non-linearity for mode (0,1) with an axigyretric imperfection having the shape
of mode (0,1).
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has already been observed and commented for the case alvgispherical shells in [22]. It has also
been observed for buckled beams and suspended cables [1Ph#lis a small denominator effect
typical of internal resonancég. when the frequency of the studied mode (0,1) exactly fulfiis
relationship2wo,1) = w(o,») With another axisymmetric mode. 2:1 resonance arises highewode
(0,2) at 1.8% and with mode (0,3) at 5.@6 On a practical point of view, one must bear in mind
that when 2:1 internal resonance occurs, single-modeisnldbes not exist anymore, only coupled
solutions are possible. Hence the concept of the type oflinearity, intimately associated with a
single dof behaviour, loses its meaning in a narrow inteavalind the resonance.

(0,3) (0,4) (0,5) |
- 1

softening behaviour hardening behaviour

1 1 1 1 1 1

0 075 174 3 4 5.43 6 7 8 9 992 11
amplitude of imperfectiong@,y /h

Figure 5: Type of non-linearity for mode (0,2) with an axigyretric imperfection having the shape
of mode (0,1). 2:1 internal resonances with modes (0,3%) @nd (0,5) occurs respectively for
ap,1y/h=1.74,5.43 and 9.92.

The numerical result for mode (0,2) is shown in Fig. 5. Oncaimgthe geometric effect is
important and leads to a change of behaviour occurringat= 0.75:, i.e. for a small level of
imperfection. 2:1 internal resonance also occurs, thusticrg narrow region where hardening be-
haviour could be observed. This result extends Hui’'s amalsisice only mode (0,1) was studied.
Moreover, as a single-mode truncation were used in [10]r&tnances were missed.

Finally, the effect of the imperfection on asymmetric moaeshown in Fig. 6 for modes (2,0)
and (4,0). The very slight variation of the eigenfrequesdgthese modes versus the axisymmetric
imperfection results in a very slight effect of the geometityis observed that before the first 2:1
internal resonance, the type of non-linearity shows snaalbtions. Hence, it is the behaviour of the
other eigenfrequencies and the occurrence of 2:1 inteesalmance that makes, in these cases, the
behaviour turn from hardening to softening behaviour. Fodm(2,0) this occurs for an imperfection
amplitude ofay ;)= 0.44h, where 2:1 resonance with mode (0,1) is observed. For ma0g, the
first 2:1 resonance occurs with mode (0,2)@t)= 1.3%, but do not change the behaviour. Itis the
resonance with mode (0,1) @t ;)= 4h which makes the behaviour turn from hardening to softening.

These results corroborate those obtained on shallow sghesinells [22]. The fundamental
importance of axisymmetric modes in the study of asymmaenies is confirmed, showing once
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Figure 6: Type of non-linearity for (a): mode (2,0), and (Impode (4,0), with an axisymmetric
imperfection having the shape of mode (0,1).

again that reduction to single mode has no chance to delrezat results. The behaviour of purely
asymmetric modes is found to be of the hardening type urgiltii internal resonance with mode
(0,1) occurs. However, a specificity of mode (2,0) with reber all the other purely asymmetric
modes is that after this resonance, hardening behaviocomdgtinwith a very small value df, (), is
observed. This was also the case for shallow sphericalssf&]. Finally, for very large values of
the imperfection, the behaviour tends to be neutral.

3.2 Asymmetricimperfection

In this section, the effect of an imperfection having thepghaf mode (2,0), is studied. Due to
the loss of symmetry, degenerated modes are awaited totoeasst : the equal eigenfrequencies of
the sineandcosineconfiguration of degenerated modes split. In the followigigtinction is made
systematically between the sine or cosine configurationoofiganion modesg.g. mode (2,0,C)
(resp (2,0,S)) refers to the cosine (resp. sine) configumatiiore precisely, the imperfection has the
shape of (2,0,C), and is shown in Fig. 7.

The behaviour of the eigenfrequencies with the imperfectioshown in Fig. 8. As expected,
the variation of the eigenfrequency corresponding to (2,6s huge whereas (2,0,S) keep quite a
constant value. The symmetry is not completely broken. CGarestiow that only eigenmodes of
the type (2, n) split. On the other hand, as shown in Fig. 8, modes (33D),(1,1) are still
degenerated.

The numerical results for type of non-linearity relativette two configurations (2,0,C) and
(2,0,S), are shown in Fig. 9. The natural frequency of mode,(d undergoes a huge variation,
which result in a quick change of behaviour, occurring atf.5Then, a 2:1 internal resonance with
(0,2) is noted, but without a noticeable change in the typaani-linearity, as the interval where
the discontinuity is present is very narrow. In this case,iehaviour off{, o -y looks like the one
observed in the precedent case, the variation ofl ;) versus an imperfection having the same
shape. On the other hand, the eigenfrequency of mode (2gh&)ins quite unchanged, so that the
behaviour of{, sy is not much affected by the imperfection, until the 2:1 intdrresonance is
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nodal diameters of:
(2,0,0) (2,0,5)

ﬁ_/ﬁ q2.0.0)

a=1

(b) (©)

Figure 7: (a) 3-d view, (b) top view and (c) cross-sectiomglé = 0 for the plate with imperfection
having the shape of mode (2,0,C).
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Figure 8: Non-dimensional natural frequencigs ., of the imperfect plate versus the amplitude of
the imperfection having the shape of mode (2,0,C).

encountered. In that case, the resonance occurs with teeaihfigurationj.e. mode (2,0,C).
Finally, the results for the first two axisymmetric modesljtand (0,2) are shown in Fig. 10.
Mode (0,1) shows a very slight variation of its eigenfrequewith respect to the asymmetric imper-
fection (2,0,C). Consequently, the type of non-lineastgot much affected, until the eigenfrequency
of (2,0,C) comes to two timesy, ;). 2:1 internal resonance occurs, and the behaviour becooftes s
ening. On the other hand, the eigenfrequency of (0,2) is rafiexted by the imperfection. This
result in an important decrease’fif o) while still remaining positive. A 2:1 internal resonancetiwi
(0,3) is encountered for 3.5]1and two others 2:1 resonance, with (0,4) and (0,5), occorsa ..
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Figure 9: Type of non-linearity for (a): mode (2,0,C) and ((2,0,S); for an imperfection having the
shape of mode (2,0,C).

However the interval on which the type of non-linearity cas its sign is so narrow that it can be
neglected. The behaviour is thus mainly of the hardening fgp(0,2).

softening behaviogrﬁardening behaviou

(a)
1
T(Oyl)
0.5
(2,0,C)
O,
-05}
_1 i i i
0 2 3574 6 8 10

amplitude of imperfection@gc) /h

(b)
05
0.2)
(0,3
0,
05|
0 2 351 6 8

amplitude of imperfection @ c)

10
/h

Figure 10: Type of non-linearity for (a): mode (0,1) and (£;2); for an imperfection having the
shape of mode (2,0,C).

4 Effect of damping

In this section, the effect of viscous damping on the typeani-hinearity, is addressed. The par-
ticular case of the shallow spherical shell is selectedtabdish the results. The equations of motion
are first briefly recalled. Then specific cases of damping ansidered, hence complementing the
results of [22], that were limited to the undamped shell.
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4.1 Theshallow spherical shell equations

The local equations of motions for the shallow sphericallstzan be obtained directly, see [44]
for a thorough presentation. They can also be obtained frge(k), by selecting an imperfection
having a spherical shape, as shown in Fig. 1(c), see [42]h Withe radius of curvature of the
spherical shellR >> a to fulfill the shallow assumption), the local equations w{44]:

AAw + e, AF + 1w =¢ [L(w, F) — cw + p(r,6,1)], (16a)
AAF — /kAw = —%L(w,w), (16b)

where the aspect ratioof the shell has been introduced:

0,4

= g (17)

ande, = 12(1 — v?)y/k. The boundary conditions for the case of the spherical stigil free edge
write exactly as in the case of the imperfect circular platshat Eqs (6) are still fulfilled [44, 42].
A peculiarity of the spherical shell is that all the involvgdantities, linear (eigenfrequencies and
mode shapes) and non-linear (coupling coefficients and eypmn-linearity) only depends om,
which is the only free geometric parameter. Hence all theltesvill be presented as functions ©f

A Galerkin expansion is used for discretizing the PDESs ofiorotAs the eigenmodes,,(r, #)
are known analytically [44], they are used for expandinguhknown transverse displacement:

+oo
w(r,0,t) = X,(t) D(r,0). (18)
p=1
The modal displacements, are the unknowns, and their dynamics is governed/lpy> 1:

+o00 +00
X+ 26w, X, + w0 X, +2, > GHXXj+e Y XXX =0, (19)

i.j=1 i, k=1

The analytical expressions for the quadratic and cubic loggoefficients(g;;, ﬁfjk) involve inte-
grals of products of eigenmodes on the surface, they canuwefm [44, 22]. As in the previous
section, a modal viscous damping term of the f@gpw, X,, is considered, whereas external forces
has been cancelled as only free responses are studied.

The type of non-linearity can be inferred from Eqgs (19) byngsihe NNM method. The results
for an undamped shell has already been computed and arefgese [22]. However, an extension
of the NNM-method, taking into account the damping term, Ibeesn proposed in [39]. Amongst
other things, it has been shown on a simple two-dofs systecowbled oscillators, that the type
of non-linearity depends on the damping. The aim of thisiseds thus to complement the results
presented in [22] for documenting the dependence of a shellstous damping and for assessing
its effect.

4.2 Numerical results

Three cases are selected in order to derive results for atyarf damping behaviours:
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case(i) Vp=1..N, {=¢/w,
case(ii) Vp=1..N, & =¢
case(iii) Vp=1..N, & =¢&uw,

where¢ is a constant value, ranging from 0 to 0.3. Case (i) corredptm a decay factoRf,w, =

2§) that is independent from the frequency. with a constant¢ value for any mode. With a
small value of¢, it may model the low-frequency.€. below the critical frequency) behaviour of
thin metallic structures such as aluminium plates [45, 4B4&se (ii) describes a decay factor that
is linear with the frequency, and may model for instance deaingtructures as glass plates in the
low-frequency range [45]. Finally, case (iii) accounts &strongly damped structure, with a center
manifold limited to a few modes.

3 (a) ) (b)
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Figure 11: Type of non-linearity for (a): mode (0,1) and (4,0) versus the aspect ratioof a
shallow spherical shell. Increasing values of damping émec(i) ¥ p = 1... N, &, =¢/w,), are
shown, with¢ = 0 and 0.01 (red), 0.1 (cyan) and 0.3 (violet).

The effect of increasing damping is shown for modes (0,1) @nd), for case (i) in Fig. 11,
case (ii) in Fig. 12, and case (iii) in Fig. 13. Mode (0,1) umpies a rapid change of behaviour:
the transition from hardening to softening type non-limyamccurs atx= 1.93. Then 2:1 internal
resonance with mode (0,2) occurs<at 36, but the behaviour remains of the softening type. Mode
(4,0) displays a hardening behaviour until the 2:1 resoeamith mode (0,1) ak= 174.1. The
first resonance with (0,2) at= 36.9 does not change the behaviour on a large interval. nfpidlie
damping of case (i) shows that the discontinuity ocurring:atinternal resonance is smoothened.
However, it happens for a quite large amount of damping instinecture. Damping values of 0,
le-4, 1e-3 and 1le-2 have been tested and give exactly thelsgimgiour so that only one curve
is visible in Fig. 11. Large values of the damping tefrmamely 0.1 and 0.3 (which correspond
to strongly damped structures) must be selected to see seerdinuity smoothened. Moreover,
outside the narrow intervals where 2:1 resonance occueseffect of damping is not visible. As a
conclusion for case (i), it appears that this kind of damiag a really marginal effect on the type
of non-linearity, so that undamped results can be estimagadliable for lightly damped structures
with modal damping factor below 0.1.
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Figure 12: Type of non-linearity for (a): mode (0,1) and ((),0) versus the aspect ratio Increas-

ing values of damping for case (iy(p = 1... N, ¢, = &), are shown, witlf = 0 and 0.01 (red),
0.1 (cyan) and 0.3 (violet).

Case (ii) corresponds to a more damped structure than gast(ever, it is observed in Fig. 12
that the discontinuity is not smoothened at the 2:1 inteesdnance. Inspecting back the analytical
results show that this is a natural consequence of the esipresf the coefficients of the non-
linear change of co-ordinates for asymptotic NNMs. Whendpecific case of constant damping
factors is selected, small denominators remain presentth®mwther hand, outside the regions of
2:1 resonance, the effect of damping is pronounced and eebdhe softening behaviour. But once
again, very large values of damping factors such as 0.3 neustdthed to see a prominent influence.
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Figure 13: Type of non-linearity for (a): mode (0,1) and ((),0) versus the aspect ratio Increas-
ing values of damping for case (iiif/(p = 1... N, ¢, = £w,), are shown, witi¢ = 0 and le-4
(black), 1e-3 (magenta) and le-2 (red).

Finally, case (iii) depicts the case of a rapidly increadilegay factor with respect to the fre-
guency. As the overall damping in the structure is thus laggealler values of have been selected,
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namely le-4, 1e-3 and le-2= le-4 gives quite coincident results wigh 0. But fromé= 1e-3, the
effect of the damping is very important: the discontingtage smoothened, except the larger one
occurring for mode (4,0) with mode (0,1). Fér 1e-2, 2:1 resonance are not visible anymore. A
particular result with this value is for mode (4,0): the srimming effect is so important that the
non-linearity remains of the hardening type. Finally, taetfthat the damping generally favours the
softening behaviour can not be declared as a general ruteeasounterexample has been exhib-
ited here. From these results, it can be inferred that thepdagrhas little incidence on the type of
non-linearity for thin structures, until very large valua® attained. It is observed that the damping
generally favours the softening behaviour, but this rul@as true in general. In particular when
the transition from hardening to softening type non-limgas due to a 2:1 internal resonance, and
is not the direct effect of the change of geometry, a largaevalf damping may favours hardening
behaviour, as observed here for mode (4,0) in case (iii).

5 Conclusion

The effect of geometric imperfections on the hardeningésong behaviour of circular plates
with a free edge has been studied. Thanks to the NNMs, qatwditresults for the transition from
hardening to softening behaviour has been documented,rfomder of modes and for two typical
imperfections. Two general rules have been observed frenmtimerical results: for modes which
eigenfrequency strongly depends on the imperfection, ype bf non-linearity changes rapidly,
and softening behaviour occurs for a very small imperfectigth an amplitude being a fraction of
the plate thickness. On the other hand, some eigenfreqeeesbiow a slight dependence with the
considered imperfection. For these, 2:1 internal resoes@ce the main factor for changing the
type of non-linearity. In a second part of the paper, theatféd viscous damping on the type of
non-linearity of shallow spherical shells have been stdigk has been shown quantitatively that
this effect is slight for usual damping values encounteretthin structures.
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