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Abstract: This paper summarizes some results obtained in the last few years for the modeling of
nonlinear vibrating instruments such as gongs and cymbals. Linear, weakly nonlinear and chaotic
regimes are successively examined. A theoretical mechanical model is presented, based on the
nonlinear von Kármán equations for thin shallow spherical shells. Modal projection and Nonlinear
Normal Mode (NNM) formulation leads to a subset of coupled nonlinear oscillators. Current
developments are aimed at using this subset for sound synthesis purpose.

Keywords: Gongs and cymbals, Nonlinear vibrations, Bifurcations, Combination of modes, Chaos

1. INTRODUCTION

Gongs and cymbals belong to the category of percus-

sive instruments. They are sometimes denoted as ‘‘non-

linear percussion instruments,’’ which emphasizes the fact

that nonlinearity is essential in the production of sound by

such sources. In normal use, the vibratory displacement is

of the order of magnitude of the thickness, which induces

geometrical nonlinearity. Therefore, a proper description of

the phenomena has to include such nonlinear terms in the

model.

Experimentations performed on these instruments for

many years have shown the typical features of this

nonlinear behavior: amplitude-dependent level of harmon-

ics in the spectrum, pitch glide, bifurcations, energy

exchange between modes through nonlinear coupling and

chaos [1–6]. More recently, similar experiments were made

on structures of simpler geometry (circular plates, shallow

spherical shells) which exhibit comparable effects [7–10].

The aim of the present paper is to summarize recently

observed experimental results and to assess the pertinence

of a nonlinear model with quadratic geometrical non-

linearity in describing such effects.

Most experiments were conducted on real cymbals and

gongs punctually excited by a sinusoidal electromagnetic

force with slowly increasing (or decreasing) amplitude.

The recorded punctual velocity shows bifurcations from

linear to chaotic regime. Two transitions are commonly

observed: the first bifurcation can be explained by energy

exchange between normal modes which are strongly

coupled by an internal resonance relationship. After the

second transition, the velocity signal exhibits a chaotic

behavior. Although the excitation signal is a pure tone, it is

important to notice that the chaotic regime sounds similar

to real instruments normally excited by the strong impact

of a mallet.

The theoretical model is based on the von Kármán

nonlinear equations for large deflections of thin shallow

spherical shells. As a result of the projection of the solution

on the linear modes of the structure, a set of nonlinear

coupled differential equations is obtained that govern the

dynamics of the problem. In these oscillator equations, the

coefficients are directly connected to the geometry and

elastic properties of the vibrating object. A truncation of

this set of nonlinearly coupled oscillators is performed in

order to investigate the essential properties of the combi-

nation of modes. Instability conditions and the threshold

values for the excitation are derived from the resolution of

these subsets, using the method of multiple scales. Using

nonlinear normal modes (NNM), a subset composed of a

limited number of equations is obtained which approximate

the solution more accurately than a subset obtained from

the linear modal projection [11].

2. SUMMARY OF EXPERIMENTS

In their normal use, cymbals and gongs are set into

vibrations by means of a mallet impact. However, as stated

in [5], the nonlinear vibrations are due to large amplitude

motion and can be thus studied using sinusoidal excitation,

which greatly simplifies the interpretation. In fact, one can
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notice that sounds produced with strong harmonic excita-

tion are very similar to those resulting from impulsively

excited instruments.

Figure 1 shows the fundamental experiments per-

formed on the investigated instruments and structures.

The top of the figure shows the progressively increasing

noncontact excitation force at frequency � close to one

eigenfrequency of the structure. As a result, the transverse

acceleration of one selected point exhibits first a periodic

motion with increasing level of harmonics 2�, 3�,. . . A

first bifurcation occurs suddenly for a given force thresh-

old. This bifurcation is characterized by the apparition of

new frequencies !i and ! j whose values are governed by

the following rules:

p� ¼ ai!i þ aj! j

with ai; aj 2 Z and jaij þ jajj ¼ 2
ð1Þ

where p is the harmonicity order of the excitation and !i

and ! j are other eigenfrequencies of the structure. These

rules are direct consequences of quadratic nonlinearity

[12]. The first equation in (1) characterizes the phenom-

enon of combination resonances. It shows that combina-

tions can occur under the condition that one eigenfrequen-

cy, or one of its multiple, has particular algebraic

relationship with one or two other eigenfrequencies. This

property is called internal resonance.

Between the first and second bifurcation, the motion is

quasiperiodic. The spectrum is enriched by the various

frequencies !i and ! j, resulting from the combination

rules, and by their harmonics. After the second bifurcation,

the spectrum is broadband. Calculating the Lyapunov

exponents in this part shows that the motion is chaotic [3]

(see Section 6).

3. LINEAR ANALYSIS

As shown in Section 2 the nonlinear behavior of the

structure depends on its eigenfrequencies. This imposes to

investigate first its linear vibrations. The linear motion of

the structure is governed by an equation of the form:

LðwÞ þ €ww ¼ 0 ð2Þ

where w is the transverse displacement of the thin shallow

structure and LðwÞ a linear operator. A free edge boundary

condition is added. Eq. (2) was solved analytically for a

thin shallow shell, after confirmation that the main features

of nonlinear vibrations for these structures were similar to

those of gongs and cymbals [7]. This equation was also

solved numerically, using a Finite Element modeling, for

orchestral gongs (Chinese tam-tam), for cymbals, and for

spherical caps with two different curvatures, successively.

This latter case, in particular, shows that the values of the

eigenfrequencies are highly sensitive to small changes of

curvature. In addition, the modal shapes are strongly

influenced by slope discontinuities. This property was

mentioned in previous studies by Fletcher [2]. Finally, the

linear analysis confirms the particularity of structures with

symmetry of revolution which exhibit two modes with

equal eigenfrequencies under the assumption of perfect

homogeneity. For spherical caps, the experiments show

some slight differences in frequency due to small imper-

fections (suspensions, holes, local defects,. . .). For the

Chinese tam-tam, significant differences between the

frequencies of the ‘‘twin modes’’ are observed, due to the

loss of symmetry in the structure. The exact causes of this

asymmetry are not yet fully understood.

4. WEAKLY NONLINEAR REGIME

4.1. Pitch Glide

An aurally impressive effect of some relatively thick

and massive gongs is the pitch glide exhibited when struck

near their center. As mentioned by Fletcher [4], different

effects can be observed. For a large Chinese opera gongs,

whose central striking surface is flat, for example, a

downward glide in pitch ‘‘by as much as three semitones’’

can be heard. On the other hand, smaller gongs with a

pronounced curvature, glide upward.

Such properties can be related to the amplitude-
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frequency curve exhibited by nonlinear oscillators of the

Duffing type [12]. A non-linear oscillator shows a harden-

ing behaviour when the resonance curve is bent to the right

(direction of increasing frequencies) (see Fig. 3), which

corresponds to a downward pitch glide in free vibrations,

since the amplitude of the damped oscillator decreases with

time. On the contrary, a softening behaviour corresponds to

a resonance curve bent to the left and yields an upward

pitch glide for free vibrations.

When gongs are struck at the center, the prime excited

mode is the first axisymmetric mode. For flat plates, this

leads to a hardening behaviour governed by cubic non-

linearity. When a curvature is present, the type of

behaviour (hardening or softening) depends on the balance

between quadratic and cubic terms. The transition between

these two cases has been studied by Fletcher, for a single

mode of simple rods systems, by Thomas et al. [13], and,

more exhaustively, by Touzé and Thomas for shallow

spherical shells [14]. In this latter paper, it is shown that

increasing the curvature leads to changing the behaviour

from hardening to softening. This yields, among other

things, a theoretical proof for the experimental effects

observed by Fletcher [4] and Rossing [15].

Notice that pitch glide occurs as long as the non-

linearity is kept relatively weak. This explains why pitch

glides are frequently heard on thick gongs, but not on thin

cymbals, where the crash shimmering sound is the

dominant feature. These observations are in agreement

with the experimental results presented below. For thin

structures, nonlinear effects are present even for very small

amplitude of vibration, and thus energy transfer and mode

coupling phenomena usually appear before the pitch glide.

4.2. Nonperiodic Regime

The presence of new frequencies in the nonperiodic

motion can be explained by a stability study performed on

a finite set of nonlinearly coupled oscillators. We take here

the example of a system with an internal resonance of order

two. This corresponds to a three-modes subset for which

we have !3 ’ 2!2 ’ 2!1 and " � 1. This configuration is

observed on the spherical cap as the symmetric mode (0,1)

forced at the center excites the twin asymmetric modes

(6,0)a and (6,0)b through nonlinear coupling (see Fig. 2 and

Section 5).

The solution is obtained by applying the method of

multiple scales [10] to the system:

€xx1 þ !1
2x1 ¼ "½��13x1x3 � 2�1 _xx1�

€xx2 þ !2
2x2 ¼ "½��23x2x3 � 2�2 _xx2�

€xx3 þ !3
2x3 ¼ "½��11x1

2 � �22x2
2 � 2�3 _xx3 þ P cos�t�

ð3Þ
The shell is excited at a frequency close to the asymmetric

eigenfrequency, so that the forcing frequency can be

written � ¼ !3 þ "�2, where �2 is the external detuning

parameter. The coefficients �13, �23, �12, �11 and �22

depend on the geometry and material of the structure. The

damping coefficients �1, �2 and �3 are generally derived

from experiments [10]. Solving Eq. (3) yields solutions of

the form [6]:

x1 ¼ a1 cos
�

2
t �

�1 þ �3

2

� �

x2 ¼ a2 cos
�

2
t �

�2 þ �3

2

� �
x3 ¼ a3 cosð�t � �3Þ

ð4Þ
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Fig. 3 Typical resonance curve for a nonlinear oscil-
lator of the hardening type.

Fig. 2 Measured linear eigenmodes of the spherical cap
linked by internal resonance of order two. Top: Mode
(6,0) - f ¼ 111Hz; Bottom: Mode (0,1) - f ¼ 224Hz.
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Figure 4 shows that, under certain conditions of both

forcing amplitude and external detuning, stable subhar-

monics of order 2 with amplitudes a1 and a2 can exist.

5. NONLINEAR MECHANICAL MODEL

It is now examined how nonlinearly coupled oscillators

of the form (3) can be derived from the equations of motion

of a shallow free-edge spherical cap with geometrical

nonlinearities. The shell is assumed to be thin so that its

thickness h � a, where a is the radius of the circle

corresponding to the horizontal projection of the cap. It is

also supposed to be shallow, which implies h � R where R

is the radius of curvature (see Fig. 5).

5.1. Equations of Motion

The nonlinear flexural motion of thin shallow spherical

shells is well described by generalized von Kármán

equations [8]. Normalizing the displacement with respect

to the quantity h2=a, where a is the radius of the circle

corresponding to the projection of the shell onto a plane

perpendicular to its axis, and h its thickness, the equations

of motion can be written in the following nondimensional

form:

�2wþ €ww ¼ �"q�F þ "c½Sðw;FÞ � 2� _wwþ p�

�2F �
a3

Rh2
�w ¼ �

1

2
Sðw;wÞ

ð5Þ

where F is the Airy stress function, S is a nonlinear

operator, � is a damping coefficient, p is the forcing

pressure and R the radius of curvature. The quadratic ("q)

and cubic ("c) parameters are given by:

"q ¼ 12ð1� �2Þ
a

R
; "c ¼ 12ð1� �2Þ

h2

a2
ð6Þ

where � is the Poisson’s ratio. For common geometries of

thin shallow spherical shells, cymbals and gongs, we have

"c � "q. Projection of Eq. (5) onto the eigenmodes of the

structures with free edge yields the set of differential

equations for the modal participation factors qiðtÞ:

€qqi þ !i
2qi ¼ �"c

X
j

X
k

X
l

� i
jkl qjqkql

þ "q �
X
j

X
k

�i
jk qjqk � 2�i _qqi þ PiðtÞ

" # ð7Þ

Explicit expressions of the coefficients �ijk and � i
jkl can be

found in [8].

For the case presented in Fig. (2), we can assume that

the nonlinear coupling only involves the asymmetric

modes (6,0) and the symmetric mode (0,1), so that we

can truncate Eq. (7) and write the approximation:

wðr; �; tÞ � �60ðrÞ½q1ðtÞ cos 6� þ q2ðtÞ sin 6��
þ�01ðrÞq3ðtÞ

ð8Þ

where q1 and q2 are the time histories of the two quadrature

configurations of the asymmetric modes (6,0). This

truncation yields finally:

€qq1 þ !1
2q1 ¼ "q½��13q1q3 � 2�1 _qq1�

€qq2 þ !2
2q2 ¼ "q½��23q2q3 � 2�2 _qq2�

€qq3 þ !3
2q3 ¼ "q½��11q1

2 � �22q2
2 � 2�3 _qq3 þ P3ðtÞ�

ð9Þ

where the cubic terms have been neglected, according to

Eq. (6).

Further simplifications are obtained by the use of NNM

(see below). In practice, experiments show that the

previous equations remain valid for kwk � h and R � a,

even if some of the nondimensional perturbating terms are

not kept small compared to unity.
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5.2. Nonlinear Normal Modes (NNM) Formulation

NNM theory was developed in order to extend some of

the properties of the linear normal modes to nonlinear

systems. The leading idea is to decouple the nonlinear

oscillators, in order to appropriately truncate the infinite

series of differential equations derived from the nonlinear

Partial Differential Equations that govern the motion. A

NNM is defined as an invariant manifold in phase space,

i.e. as a two-dimensional surface that is tangent to the

linear modal eigenspace at the equilibrium point. As

written in [16], the term ‘‘invariant’’ indicates that ‘‘any

motion initiated on the manifold will remain on it for all

time.’’ In the context of sound synthesis, NNM are used for

simplifying the dynamical system while keeping the

essential features of the motion: hardening/softening

behavior, dependence of mode shape with amplitude. In

practice, the reduction is obtained through nonlinear

change of coordinates based on normal form theory [11].

From a physical point of view, this approach shows that the

nonlinear dynamics is governed by a small number of

active modes. This means that only a limited number of

nonlinear oscillators are strongly coupled, and thus it is

possible to reduce the dimension of Eq. (7) without

affecting the global energy flow through the oscillators.

In our case, the number of active modes is generally small

(5 to 10 oscillators). Time-domain simulations performed

with such a projection allows to reproduce the first

bifurcation with great accuracy. Simulation of the second

bifurcation is currently investigated.

6. CHAOS

6.1. Phase Space

After the second bifurcation (see Fig. 1), the recorded

vibratory signal exhibits a wideband spectrum where one

cannot easily distinguish discrete frequency peaks anymore

(see Fig. 6). It turns out that the Fourier analysis is not

sufficient here for describing the dynamics of the system

and one has to use other tools.

Phase space analysis is among the most efficient

method for gaining insight on the dynamics of nonlinear

systems. For a given time series sðtÞ, a state space trajectory
is obtained through displaying of the locus of points with

coordinates (sðtÞ; sðt þ TÞ) where T is a time delay whose

appropriate selection will not be discussed further here

[17].

As the driving amplitude is kept small (case 1), Fig. 6

shows that the space trajectory takes the form of a closed

curve. With increasing amplitudes, typical foldings are

observed which indicate a possible route to chaos (case 2).

After the second bifurcation, the trajectory takes the form

of a blurred structure (case 3). Our goal here, is to show

how we can extract some invariants from this structure that

could help in characterizing and quantifying the signal.

6.2. Low-Dimensional Deterministic Process

The erratic structure of the signal in case 3 could incite

us to think of a random process. In fact, a random process

has the property that portions of extracted time series are

uncorrelated. Therefore, one interesting method is to

calculate a correlation dimension on gong or cymbal

vibrations in order to see whether it is a random process or

not. To achieve this, we start by composing vectors of the

form:

yðnÞ ¼ ½sðnÞ; sðnþ TÞ; . . . ; sðnþ ðdE � 1ÞTÞ�
with n ¼ 1; . . . ;N � ðdE � 1ÞT

ð10Þ

where sðnÞ is the sampled version of sðtÞ of length N, and

dE is a so-called embedding dimension.

The correlation dimension dc is derived from the

computation of a correlation integral Cð"Þ defined as the

number of points in the phase space whose mutual distance

is less than a given value ":

Cð"Þ ¼
1

NðN � 1Þ

X
i6¼ j

Hð"� kyðiÞ � yð jÞkÞ ð11Þ

where H is the Heaviside function and k:k is the norm in

the y-vector space.

It has been shown by Grassberger and Procaccia that

Cð"Þ � "dc [18]. In practice, the procedure thus consists in

computing dc ¼ lnCð"Þ= ln " for increasing values of the

embedding dimension dE.

Figure 7 shows dc as a function of dE for 4 different

conditions of punctual harmonic excitation on a crash

cymbal. In each case, one can see that dc tends asymptoti-

cally to a finite value as dE increases. These results tend to

prove that the dynamics of the instrument is governed by a
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finite number of degrees of freedom. Similar results are

obtained in the case of gongs. In the case of a random

process, dc would have tend to infinity with increasing dE.

6.3. Lyapunov Exponent

A chaotic system is characterized by its sensitivity to

initial conditions. As a consequence, small differences in

these conditions can yield very different time-evolutions of

the system. In the phase space, these evolutions are seen as

diverging trajectories with time. Therefore, an appropriate

method for detecting and quantifying chaos is to find a

measure of this divergence. For a chaotic system, the

evolution with time of the distance between two points in

the phase space is found to be exponential of the form e�t

where the rate � > 0 is the Lyapunov exponent.

Lyapunov exponents were computed for cymbal vi-

brations [3]. Is has been found (see Fig. 8) that, with

increasing dimensions dL of the data vectors, at least one

exponent is positive and that its value converges to a

constant value. For experimental signals, the analysis often

yields other exponents (positive or negative), and the

selection of real and spurious exponents is a rather delicate

task. One important issue to remind is that the largest

exponent is the most reliable, since this exponent governs

the divergence.

7. SUMMARY AND CONCLUSION

In this paper, the nature of nonlinear coupling that leads

to the particular sounds of cymbals and gongs has been

described, by analogy with the similar behavior of thin

shallow spherical shells. The same method can be now

applied to more complex geometries, though, in this case,

the coupling coefficients, which depend on the modal

shapes, have to be computed numerically. Is has been

shown, both theoretically and experimentally, that the

energy transfer between modes is a consequence of

quadratic nonlinearity due to curvature of the shell and is

fully governed by frequency rules. The mechanical theory

also shows that instability can occur with only a limited

number of degrees of freedom, which is confirmed by an

estimation of the dimension obtained from nonlinear signal

analysis on cymbals and gongs. Finally, the computation of

Lyapunov exponents shows that the dynamics obtained in

case of strong excitation is chaotic. Current development

are aimed at obtaining relevant synthetic sounds from the

numerical resolution of a small number of coupled non-

linear oscillators.
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interactions in free-edge thin spherical shells: Measurements of
a 1:1:2 internal resonance,’’ 3rd MIT Conf. Computational
Fluid and Solid Mechanics, Boston (2005).
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[13] O. Thomas, C. Touzé and A. Chaigne, ‘‘Non-linear behaviour
of gongs through the dynamics of simple rods systems,’’ Proc.
Int. Symp. Mus. Acoust., Perugia (2001).
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