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1 INTRODUCTION

This article deals with the application of reduced-order models (ROMs), via the asymptotic NNM method
proposed in [1], to thin shells large-amplitude vibrations. Two particular geometries are addressed: a
doubly-curved shallow shell, simply supported on a rectangular base, and a circular cylindrical panel
with simply supported, in-plane free edges. In both cases, the shell is subjected to a harmonic excitation,
normal to its surface, and in the spectral neighbourhood of its fundamental frequency.

For both shells, the models use Donnell’s non-linear strain-displacement relationships, with in-plane
inertia retained. The discretized equations of motion are obtained by the Lagrangian approach described
in [2, 3, 4], where the unknown displacements are expanded onan ad-hoc basis of approximation func-
tions that are not the eigenmodes. As a consequence, a large number of degrees-of-freedom (dofs) is
necessary in order to obtain convergence.

The reduction to a single NNM is shown for various excitationamplitude, and compared to a reference
solution. Perfect results are obtained for vibration amplitude lower or equal to 1.5 times the thickness of
the shell.

2 EQUATIONS OF MOTION

The main steps of the Lagrangian approach used for deriving the equations of motions are here only
sketched, the interested reader can refer to [2, 3, 4] for a complete description. The two structures under
study are: (i) a doubly curved shallow shell with rectangular base, (ii) a circular cylindrical panel. For
case (i), a curvilinear coordinate system(O,x, y, z) is used, whereas a cylindrical coordinate system
(O,x, r, θ) describes case (ii), see Figure 1. A particular doubly curved shell is selected, such that
Rx/Ry = −1 (hyperbolic paraboloid panel), whereRx andRy are the principal radii of curvature.

The Donnell’s strain-displacement relationships for thinshells are used for deriving the elastic strain
energy of the shells. Kinetic energy is expressed by neglecting rotary inertia and keeping in-plane inertia
terms. An external transverse point excitation, located at(x̃, ỹ) for case (i), or at(x̃, θ̃) for case (ii) is con-
sidered. Its temporal content is harmonic with frequencyω and magnitudẽf (in Newton). The boundary
conditions are simply supported for the hyperbolic paraboloid panel, and with simply supported, in-plane
free edges for the circular cylindrical panel. The equations of motions are discretized with a Lagrange
formulation, by expanding the middle surface displacements (u, v,w) on a basis of trigonometric func-
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(a) (b)

Figure 1. Geometry and coordinate system for (a) the doubly curved panel, from [3]; and (b) the circular
cylindrical panel, from [4].

tions satisfying identically the geometric boundary conditions. For case (i), the expansion reads:

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um,n(t) cos(mπx/a) sin(nπy/b)
vm,n(t) sin(mπx/a) cos(nπy/b)











(1)

For case (ii),y/b must be replaced byθ/α, and the two sine functions appearing in the expansion of
u andv must be replaced by cosine functions in order to satisfy boundary conditions. Letq be the vector
of generalized coordinates :

q = [wm,n um,n vm,n]T , m = 1, ...M, n = 1, ...N. (2)

Let P be the dimension ofq, which generic element is referred to asqp. The discretized Lagrange
equations of motions then reads,∀p = 1, ... P :

q̈p + 2ζpωpq̇p +
P
∑

i=1

zp
i qi +

P
∑

i,j=1

zp
i,jqiqj +

P
∑

i,j,k=1

zp
i,j,kqiqjqk = fp cos(ωt). (3)

Modal damping has been added in Eq. (3), andf = [f1 ... fP ]T is the vector of the projected external
forcing considered. The panels response to harmonic excitation in the vicinity of the first eigenfrequency
is then numerically studied with the software AUTO. Numerical frequency-response curves are then ob-
tained by continuation. By convention, the reponse given byEq. (3) will be referred to as the reference
solution. The number of dofsP is generally relatively large for attaining convergence. This reference so-
lution will then be compared to frequency-response curves obtained by reduced-order models computed
with NNMs, as explained in the next section.

3 REDUCED-ORDER MODELS

3.1 Numerical computation of the eigenmodes

The first step for reducing the size of the system is to make thelinear part diagonal. LetL = [zp
i ]p,i be

the linear part (stiffness) of Eq. (3), andP the matrix of eigenvectors (numerically computed) ofL such
that: P−1LP = Λ, with Λ = diag

[

ω2
p

]

, with ωp the eigenfrequencies of the structure. A linear change

of coordinates is computed,q = PX, whereX = [X1 ...XP ]T is, by definition, the vector of modal
coordinates. Application ofP makes the linear part diagonal, so that the dynamics can now be expressed
in the eigenmodes basis, and reads,∀p = 1, ... P :

Ẍp + 2ζpωpẊp + ω2
pXp +

P
∑

i,j=1

gp
i,jXiXj +

P
∑

i,j,k=1

hp
i,j,kXiXjXk = Fp cos(ωt). (4)
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The application ofP let the damping unchanged, andF = P−1f is the new vector of modal forces.
By increasing the number of linear modes retained in the modal vectorX, convergence with respect to
the number of eigenmodes can be studied, see section 4 and 5.

3.2 Non-linear normal modes (NNMs)

Eq (4) is now transformed with the asymptotic NNM procedure described in [1]. A non-linear change of
coordinate is computed:

(

Xp

Yp

)

=

(

Rp

Sp

)

+

(

P
(3)
p (Ri, Si)

Q
(3)
p (Ri, Si)

)

, (5)

whereYp = Ẋp is the velocity,(Rp, Sp) are the new variables that describe the dynamics in an invariant-

based span of the phase space, andP
(3)
p , Q(3)

p are polynomials of the third degree. The dynamics is
then expressed with the introduced(Rp, Sp) variables, that describe the motion along NNMs (invariant
manifolds), computed up to a third-order approximation (degree of the polynoms). Within this new,
invariant and curved basis spanned by the NNMs, proper truncation of the system can now be realized,
as already shown in [1]. In the remainder of the study, reference solution (withP basis functions) will be
compared to simulations with an increasing number oflinear modes(dimension ofX), and to simulations
with a single NNM, obtained by keeping in the dynamics only the directly excited NNM.

4 HYPERBOLIC PARABOLOID PANEL

The reference simulation is obtained withP = 22 basis functions. Convergence has been checked in
[3] for an excitation amplitude of̃f = 4.37 N. The generalized coordinates retained are:w1,1, w1,3,
w3,1, w3,3, u1,1, u3,1, u1,3, u3,3, u1,5, u5,1, u3,5, u5,3, u5,5, v1,1, v3,1, v1,3, v3,3, v1,5, v5,1, v3,5, v5,3, v5,5.
Figure 2 shows the maximum of the panel response in the spectral neighbourhood of the first eigenfre-
quencyω1, numerically obtained by continuation with the software AUTO. Only the principal coordinate
response,w1,1, is represented. It is compared to the response obtained by two severely reduced-order
models, obtained by keeping either only one linear mode (Only the firstX1 coordinate is kept forX), or
one NNM (onlyR1 is kept in this case).
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Figure 2. Comparison of reference simulation obtained with22 dofs (ref) with reduced models consist-
ing of a single oscillator equation: one linear mode (LNM) and one NNM. Three different excitation
amplitude are shown: (a):̃f = 2.84 N, (b): f̃ = 4.37 N, (c): f̃ = 6.66 N.

For f̃ = 2.84 N, it is observed that the NNM reduced model is very close to the reference solution,
whereas the simulation with only one eigenmode gives erroneous result. For̃f = 4.37 N, discrepancies
between the reference solution and the NNM model are observed in the prediction of the maximum
amplitude. This trend is confirmed for̃f = 6.66 N, where it is observed that the reference simulation
amplitude remains quite constant with a loop at its end. Observation of the other coordinates reveals that
much of the energy is absorbed by the higher modes for this level of excitation.
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Convergence of the solution with the number of linear modes has also been checked. It has been
found that the convergence is very slow: 15 linear modes are necessary to recover the reference solution.
Hence, the result provided by the reduction to a single NNM isvery good, and can be considered as
blindly reliable for amplitudes of vibration up to 1.5 timesthe thickness of the shell. This result is
coherent with precedent studies, and points out the validity limits of the asymptotic approach.

5 CIRCULAR CYLINDRICAL PANEL

The reference simulation is obtained withP = 19 basis functions in this case for an excitation amplitude
of f̃ = 2.2 N. The generalized coordinates retained are:w1,1, w1,3, w3,1, w3,3, u1,0, u1,2, u1,4, u3,0, u3,2,
v0,1, v2,1, v4,1, v0,3, v2,3, v4,3, v0,5, v2,5, v4,5. Figure 3(a) shows the convergence of the solution with an
increasing number of linear modes retained. Once again, a very slow convergence is observed: 15 linear
modes are necessary to recover the converged result with 19 basis functions.
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Figure 3. Maximum amplitude of the first modal coordinateX1. (a): Convergence of the solution versus
the number of linear modes retained, forf̃ = 2.2 N. (b)-(c): Comparison of reference solution with
reduction to a single linear mode (LNM) and a single NNM, forf̃ = 2.2 N andf̃ = 4.4 N.

Figure 3(b)-(c) shows the results obtained by two reduced models of the same complexity (a single
oscillator-equation). For̃f = 2.2 N, the NNM solution is close to the reference but overpredictthe
maximum value, whereas the single linear mode truncation gives erroneous result. For̃f = 4.4 N, the
reduction to a single NNM deteriorates severely and is not anymore acceptable. In this case, the validity
limit of the asymptotic NNM procedure used to reduce the system is thus estimated at 1.2 times the
thickness of the shell.
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