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Abstract—In this paper, we study Bayesian and hybrid 

Cramer-Rao bounds (BCRB and HCRB) for the code-aided (CA) 

dynamical phase estimation of QAM modulated signals. In order 

to avoid the calculus of the inverse of the Bayesian information 

matrix and of the hybrid information matrix, we present some 

analytical expressions for the various CRBs, which greatly reduce 

the computation complexity.  

I. 0BINTRODUCTION 

lassicaly there are three ways of performing estimation in 

a telecommunication system: data aided (DA), code 

aided (CA) and non data aided (NDA) estimations X[1]X. 

Earlier attempts of signal synchronization in the low-SNR 

regime focused either on the DA or NDA synchronization mode 

X[2],[3]X. On one hand, DA estimation techniques achieve the 

better performance but may lead to unacceptable losses in 

power and spectral efficiency. On the other hand, NDA 

estimation algorithms drop some information about the 

transmitted data and may lead to poor results at the benefit of 

transmission efficiency. However, with the developments of 

channel coding techniques X[4]XX,[5]X, more and more attention has 

focused on CA synchronization [6]XX,[7]X which uses the decoding 

gain to improve the estimation performance. 

 A natural question which arises when designing estimators is 

the ultimate accuracy that one can achieve in the estimation 

operation. The lower bounds answer this question by providing 

a minimum mean square error (MMSE). Although there exists 

many lower bounds, the Cramer-Rao bound (CRB) family is the 

most commonly used and the easiest to determine [8]-[11]X. 

There are several works concerning the CA CRBs for carrier 

phase and frequency estimation. In [11]X, the CRB for the CA 

carrier phase estimation has been expressed in terms of the 

marginal a posteriori probabilities (APPs) of the coded symbols, 

allowing the numerical evaluation of the CA bounds. This 

method has been applied to the evaluation of the CRB for the 

Turbo code aided [12]X and the convolution code aided [13]X 

scenarios; the CA CRBs in X[11]X-X[13]X were derived from the 

first derivative of the joint probability function between the 

observations and parameters. All these papers refer to an 

idealized situation in which the phase offset is constant. 

However, in modern communications, it is common to take into 

account a time-varying phase noise mostly due to oscillator 
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instabilities X[14]X-X[17]X. [18]X considered the DA CRB for the 

phase estimation with some noise variance. X[19]X has derived a 

Bayesian CRB restricted to the case of NDA BPSK signals. 

When a deterministic parameter such as the frequency offset is 

taken into consideration, the hybrid CRB becomes relevant. 

HCRBs were derived in the case of NDA signals in [20],[21]X 

and were applied as benchmarks in [22],[23]. 

 Differently from X[11]X-X[13],[19],[20]X, the goal and the 

contribution of the paper is to give for the dynamic time-varying 

phase, both the BCRB and the HCRB in the case of coded and 

QAM modulated signals. In addition, we give analytical 

expressions to the various CRBs which greatly reduce the 

computation complexity. The rest of the paper is organized as 

follows. In section XIIX, we recall the various kinds of CRBs. 

After describing the system model in section XIIIX, we derive the 

BCRBs and the HCRBs for both on-line and off-line estimations 

for the CA scenario in section XIVX. The derivation for the CA 

case is different than the one used in X[11]X-X[13]. Moreover, we 

also present analytical expressions for the various CRBs which 

do not require to compute the inversion of any information 

matrix. The various results are finally illustrated in section V.
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II. 1BCRAMER-RAO BOUNDS (CRBS) REVIEW 

In the following, we briefly review the links between the 

HCRB, the standard CRB, and the BCRB. In the most general 

case, the parameters to be estimated include both deterministic 

and random parameters. Denote this parameter vector 

as  ,
T

T T

r d
u u u  , where 

d
u  is assumed to be a   1n m   

deterministic vector and 
r

u  is assumed to be a 1m   random 

vector with an a priori probability density function (pdf)  r
p u . 

The true value of 
d

u  will be denoted
d


u . We consider  û y  as 

an estimator of u where y  is the observation vector. The 

HCRB satisfies the following inequality [20] on the MSE: 

       
1

, | |

ˆ ˆ
r d d d d

T

d
E  

 

 

   
  y u u u u u

u y u u y u H u ,   (1) 

 
2 The notational convention adopted is as follows: italic indicates a scalar 

quantity, as in a ; boldface indicates a vector quantity, as in a  and capital 

boldface indicates a matrix quantity as in A . The ( , )
th

m n  entry of matrix A  is 

denoted as  
,m n

A . The transpose matrix of A  is indicated by a superscript T
A , 

and A is the determinant of A . n

m
a  represents the vector  , ,

T

m n
a a , where m  

and n are positive integers ( m n ).  R e a  and  Im a  are respectively the real 

and imaginary parts of a .  x y
E  denotes the expectation over x  and y .  

 1
/ ... /

T

n
u u     

u
and T

   
v

u u v
represent the first and second order 

derivative operators. 
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where  d


H u  is the so-called hybrid information matrix (HIM) 

and is defined as: 

   
|, |

lo g , |
d dr d d

d r d
E p 





   
 

u

u u uy u u u
H u y u u .    (2) 

It is shown in X[20]X that inequality (1) is still respected when the 

deterministic and the random parts of the parameter vector are 

dependent. The HIM can be rewritten as:  

     
| |

, lo g |
d dr d d r d d

d d r r d
E E p  

 

 

     
   

u

u u uu u u u u u
H u F u u u u (3) 

where     
|| ,

, lo g | ,
d dr d d

d r d r
E p 





   
 

u

u u uy u u u
F u u y u u        (4) 

is the Fisher information matrix (FIM).  

 If in particular 
d

u u , (3) reduces to:  

     
||

lo g |d

d d dd d
d d d

E p 

 



    
 

u

u u uy u u
H u F u y u .   (5) 

Then, the inverse of (5) is just the standard CRB [8]X X.  

 On the contrary, if 
r

u u , then (3) becomes:   

   lo gr

r r r
r r

E E p      
   

u

u u u
H F u u         (6) 

where                |
lo g |r

r r
r r

E p   
 

u

y u u
F u y u .          (7) 

In this case, the inverse of (6) is the Bayesian CRB X[8]X. 

III. 2BSYSTEM MODEL 

We consider the transmission of a modulated sequence 

 1
, ,

T

L
s ss   from a constellation set 

M
S  (M-QAM, M-PSK, 

etc.) over an additive white Gaussian noise (AWGN) channel 

affected by some carrier phase offsets vector  1
, ,

T

L
 θ  . 

Without any inter-symbol interference (ISI), the received 

baseband symbols  1
, ,

T

L
y yy    can be written as: 

 l l
j j

l l l l l l
y s e n a jb e n

 
     ,     (8) 

where
l

s , 
l

  and 
l

n  are respectively the -thl  transmitted 

complex symbol, the residual phase distortion and the zero 

mean circular Gaussian noise with known variance 2

n
 .  

 We assume that the channel coding maps a message of  bits 

to a codeword of N  bits denoted as  1 2
, , ,

N
c c cc   with 

 0 ,1
n

c   ( 1 n N  ) and  | 1, , 2v



 c c  ; moreover, the 

constellation vector corresponding to code 


c  is denoted as 

      1
, ,

L
s s

  
s c c c     . Hence, the conditional probability 

based on the known vector phase is: 

           

    

2 2

1 1

2 2
2

2 2 2

1 1

| | , | ,

R e1 1
  e x p 2 .

2

l

v v v v

v v

L j
L

l l vl v l

v ln n n

p p p p p

y s es y


  

 



 





 

     

    
     

    

 

 

y θ y c c θ c c y s s c θ s s c

cc

       


(9) 

In practice, clocks are never perfect, and oscillators suffer from 

jitters. This results in a Brownian phase model with a linear 

drift: 

1l l l
w  


   ,        (10) 

where 
l

  is the unknown phase offset at time l ,   is the 

unknown constant frequency offset (linear drift), 
l

w  is a white 

Gaussian noise with zero mean and variance 2

w
 . This model is 

commonly used [14]X-[17]  XX in order to describe the behavior of 

practical oscillators for which the frequency is randomly 

perturbed. The corresponding conditional probability is: 

 
 

2

1

1 2

1
| , e x p

22

l l

l l

ww

p
  

  
 





  
  

  

.    (11) 

IV. 3BCRBS FOR THE DYNAMICAL PHASE ESTIMATION 

In practical receivers, phase estimation can actually be 

considered following two main scenarios: 

 Off-line synchronization: the receiver waits until the whole 

observation frame y  has been received. Then afterwards, 

it processes all the observations to compute the estimates 

of the carrier phase offsets θ . 

 On-line synchronization: the receiver estimates 
l

  upon 

the arrival of the -thl  observation, i.e.
l

y . The phase 

estimate is then computed based on the current and 

previous observations only, i.e.  1 1
, ,

Tl

l
y yy  . 

In this section, we derive some analytical expressions for both 

the on-line and the off-line CRBs. The parameters of the phase 

model in (10) include some random parameters  1
, ,

T

L
 θ   

(i.e. the dynamical phase) and a deterministic parameter   (i.e. 

the linear drift). So the parameters vector can be written as: 

r

d


   
    

  

u θ
u

u
.         (12) 

Equation (3) thus becomes: 

   

   

    

|

| |

|

| |

,

lo g | lo g |

lo g | lo g |
T

E

p p

E

p p





   

 
 

   

 

 

 



 



 

 

 



 

 
 

    
 


 
    
 

θ

θ

θ θ

θ

θ

H F θ

θ θ

θ θ

 (13) 

where    
|| ,

, lo g | ,E p
  

  





   
 

θ

θy θ
F θ y θ .  

 We then decompose the HIM into several sub-matrices that 

will be useful in the sequel: 

1 1 1 2 1 1 1 2

2 1 2 2 1 2 2 2

,
T

   
    
   

H H H H
H

H H H H
      (14) 

where  

 

   

   

   

1 1 | |, | |

1 2 | |, | |

2 2 | |, | |

lo g , | lo g |

lo g , | lo g |

lo g , | lo g | .

E p E p

E p E p

E p E p

      

      

      

  

  

  

  

  

  

         
   


            



         
   

θ θ

θ θy θ θ

ξ ξ

θ θy θ θ

ξ ξ

ξ ξy θ θ

H y θ ξ θ ξ

H y θ ξ θ ξ

H y θ ξ θ ξ

(15) 

A. 6BComputation of  
|

,E




 
 θ

F θ  

From (9), one obtains after some calculation the first 

derivative with respect to
m

 : 

 
 

  2

1

ln | , ,ln | ,
P r | , ,

m m m v m

v

vm m

y s sp  


 





 
 

 


cy θ
c c y θ


 (16) 

where  P r | , ,
v

c c y θ  is the a posteriori probability of a code 

word. Discriminating in (16) the code words according to the M 



 

possible values of the m
th

 received constellation symbol, and 

noting   P r | , , ,
m i v

s s  c y θ  the APP when all possible 

codewords are known, one further obtains: 

 
    

M

M

2

1

ln | , 2
P r | , , , Im l

i

j

m i v l i
s

im n

p
s s y s e





 







 




S

y θ
c y θ



  (17) 

Taking the second derivative with respect to 
k

 and
m

 , 

respectively for k m and for k m , one obtains: 

     

   
  

1 2

1 2

1 2

2

M M

2 2

1 1

ln | , ln | , ln | ,

2 Im 2 Im

P r , | , , , ,

k m

k m k m

j j

k i m i

k i m i v

i i n n

p p p

y s e y s e

s s s s

 

  

   


 

  

 

  
  

   

   

y θ y θ y θ

c y θ 

 (18) 

and: 

   

  
   

1 1

1

1

2
2

2

2

M

2 2

1

ln | , ln | ,

2 R e 2 Im

+ P r | , , , .

k k

k k

j j

k i k i

k i v

i n n

p p

y s e y s e

s s

 

 

 


 

  





   
   

  

  
    
   

  



y θ y θ

c y θ

(19) 

 If the codeword has been sufficiently interleaved before the 

mapping from bits into symbols, then: 

        
1 2 1 2

P r , | , , , P r | , , , P r | , , , ,
k i m i v k i v m i v

s s s s s s s s      c y θ c y θ c y θ      (20) 

so that taking into account (17), (18) just becomes :  

 
2

ln | ,
0 .

k m

p 

 




 

y θ
                       (21) 

It is important to note that differently from [11]X-[13], we take 

the second derivative to calculate the FIM so as to reduce the 

complexity of the computation with the help of equation (21). 

Then the FIM can be approximately written as a diagonal matrix 

and one has: 

 , ,
D L

E J
  

 θ
F θ I         (22) 

where 
L

I  is the L L  identity matrix and 
D

J  is defined as:  

 
2

2

ln | ,

D

k

p
J E





 
 

 
y , θ

y θ
 .       (23) 

B. 7B Computation of the HIM 

Like detailed in [19],[20], we now calculate the different 

sub-matrices of H  (see (14)). From (15), due to the model of 

Section XIIIX and under the assumption that we have no priori 

knowledge of
1

 , i.e.  1

1 1
1

lo g 0E p


 
  

 
, one obtains 

1 1
H  

which has a particular mathematical structure just like in X[19]X: 

1 1

1, 1 0 0

1 1 0

0 0

0 1 1

0 0 1 1

A

A

b

A

A

 

 

 

 

 

 

  

H





  





,     (24) 

where 2
2

w D
A J    and 2

1
w

b   .           (25) 

From (9), one can see that  lo g | ,
l l

p y    is independent of  , 

i.e., the partial derivatives  
|

lo g , |p 



ξ

θ ξ ξ
y θ ξ  and 

 
|

lo g , |p 



ξ

ξ ξ ξ
y θ ξ  are equal to 0. 

1 2
H  and 

2 2
H  thus become: 

 

2 2

1 2 1 2
1 , , 1

T

w wL
 

 
  
 

H 0       (26) 

 
2

2 2
1 .

w
L  H          (27) 

We now inverse the HIM so as to obtain the analytical HCRB. 

C. 8BAnalytical Expressions of HCRBs 

Similarly to Appendix I of [19]X, from (24)-(25) one obtains: 

    
1

1 1 1

1 1 1 1 1 2 2 2
1 ,

1 1

l

L l L l

l

b
r r b r r b 



    
     
 

H
H

,   (28) 

   

   

2 22 3 2 3

1 1 1 2 2 2
1

1 1 1, 2 2 1 1 2

1 1 1 2 1 2

1

2

L L

l l L L l L l L

b r r b r r

b r r r r A

 
 



     

    
     

   
 

H
H

, (29) 

where  
 

 

1
2 2

1

1
2 2

2

1 1 1 4 2

1 1 1 4 2

w D w D

w D w D

r J J

r J J

 

 





  
    

  


 
      

,            (30) 

and 
     

     

1 1 1
2 2 2

1

1 1 1
2 2 2

2

1 4 1 2 2 1 4

1 4 1 2 2 1 4

D w D w D w

D w D w D w

J J J

J J J

   

   

  

  

    
       

    


   
   

       





.         (31) 

Thanks to the block-matrix inversion formula X[10]X, we have: 
1 1 1

1 1 1 1 1 1 2

1 1 1

1 2 1 1

L

T



 

  



  

  
  

 

H V H H
H

H H
,     (32) 

where we define 1

1 2 1 1 1 22

1 T

w

L





 H H H and 1 1 1

1 1 1 2 1 2 1 1

T

L


  
V H H H H . 

To obtain the analytical expression of  and of the diagonal terms 

of
L

V , we just exploit that
1 2

H in (26) has only two non-zero terms  

and that 
1 1

H  has a particular structure (see (24)); substituting 

(26),(28),(29) into the definition of  and
L

V , we directly have:  

      
2 2 2 2 1

1 1 1 2 2 2 1 1
1 2 ,

L L L

w
L b r r b r r b b   

  
       H  (33) 

and the diagonal elements  
,L l l

V  written as: 

   
2

1 1

1 1 1 14, 1 , 1 , 1

1

L l l l L l

w
 

 

 

    
   

V H H .      (34) 

We now derive an analytical expression of the diagonal 

elements of 1

1 1 L


H V  corresponding to the minimum bound on θ  

(see (32)). Using (29) and (34), one can also get the analytical 

expression of the upper diagonal elements 1

,l l


 
 

H  in (32) i.e. 

the off-line HCRB associated to the estimation of
k

 : 

   

   

    

    

2 22 3 2 3

1 1 1 2 2 2
1

1, 2 2 1 1 2

1 1 1 2 1 2

2
1 1 1

2
1 1 1 2 2 2

2
2 2

1 1 1 1 1 2 2 2

1

2

  .

L L

l l L L l L l L

l L l L l

L l l l

b r r b r r

b r r r r A

b r b r r b rb

b r b r r b r

 

 

  

 



     

    

  

    
     

    

   
 

  
     

H
H

H

 (35) 

Finally, note that replacing 
1 1

H  by  1 1
lH  in (35), where 

 1 1
lH  is the upper left l l  sub-matrix of 

1 1
H (see (24)), one 

also readily obtains the analytical expression of the on-line 

HCRB associated to the estimation of 
l

  ( 3l  ): 

 

   

   

 

    

   

2 22 3 2 3

1 1 1 2 2 2

12 2 1 1 2

1 1 1 2 1 2

2
1 1 1

2
1 1 1 2 2 2

2
2 2

1 1 1 1 1 2 2 2

1

2

.

l

l l

l l

l

l l

b r r b r r

C
l b r r r r A

b r b r r b rb

l r b r r b r

 

 

  

 

   

  

 

    
  

    

    
  

     

H

H

H

 (36) 



 

One can notice that (35) and (36) do not depend on the value of 

the parameter  . 

D. 9BThe Bayesian Cramer-Rao Bounds (BCRBs) 

When there is no linear drift i.e. 0  , the parameter vector 

u contains only random parameters θ , i.e. 
r

 u u θ . In this 

scenario, the BCRB is the lower bound of the MSE. Moreover, 

the Bayesian information matrix (BIM) 
L

B  is equal to the upper 

left sub-matrix of the hybrid information matrix (HIM):  

1 1L
B H          (37) 

 The diagonal element 1

,
L

l l


 
 

B of the inverse of matrix 
L

B  is 

the off-line BCRB associated to the estimation of
l

 . 

Consequently, from the previous sections, the corresponding 

analytical expressions associated with the off-line and the 

on-line BCRB are respectively: 

   

   

2 23 3

1 1 1 2 2 2
1

1, 2 2 1 1 2

1 2 1 2

1
,

2

L L

L
l l L L l L l L

L

b r r b r r

b r r r r A

 
 



     

    
     

   
 

B
B

 (38) 

   

   

2 23 3

1 1 1 2 2 2

12 2 1 1 2

1 2 1 2

1
a n d ,

2
l

l l

l l

l

b r r b r r

C

b r r r r A

 
 

   

    
  

   
 

B

B
    (39) 

where
1

r ,
2

r ,
1

 and 
2

  are given by (30) and (31). Note that (38) 

(resp. (39)) is the first term on the right side of (35) (resp. (36)). 

The second terms in (35) and (36) represent the additional 

positive uncertainty brought by   so that the HCRB is always 

lower bounded by the BCRB. 

V. 4BSIMULATION AND DISCUSSION 

We assume the transmission of Gray mapped symbols. We 

display results for the rate 1 2  and 64 states non-recursive 

convolution code adopted in DVB-T [24]X with a pseudo random 

interleaver. For codes that are described by means of a trellis, 

the marginal symbol APPs can be computed from the trellis 

state APPs and state transition APPs, which in turn can be 

determined efficiently by the famous BCJR algorithm. 

Constrained by the paper size, only the HCRB will be discussed 

in the following. First like in [19]X, one readily sees on XFig. 1 the 

superiority of the off-line approach compared to the on-line 

approach in the different positions of the block. Also, there is 

little improvement for the CA scenario (compared to the NDA 

scenario) when using a BPSK modulation but the gain becomes 

obvious for a larger constellation. Moreover, as the observation 

number increases, both the on-line and off-line CRBs decrease 

and tend to reach the corresponding asymptote values. 

We now illustrate the behavior of the HCRB on 
l

  as a function 

of the SNR (Fig. 2 to Fig. 4). 

 At high SNR (above 30dB), we notice that the various 

CRBs logically merge independently of the constellations, 

on-line/off-line and DA/CA/NDA schemes. The received 

symbols are reliable enough to make a correct decision and 

the additive noise can be neglected. Hence, the estimation 

problem tends to a deterministic phase estimation problem 

where we estimate L  independent phases 
l

  with L  

independent observations. 
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Fig. 1  HCRBs in the various block positions for two constellations (BPSK, 

QPSK) and two block lengths ( 3 0L  , 1 2 0L  ). 
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Fig. 2  HCRBs in the center of the block ( 6 0l  ) for a 16QAM. 

 In mid-range SNRs, the on-line HCRBs leave their 

corresponding off-line HCRBs, because one observation is 

not sufficient to estimate the phase offset and a block of 

observations can improve the estimation performance. This 

also explains why the NDA CRBs do not merge anymore 

with the CA and the DA CRBs. Moreover, we note on XFig. 



 

4 that every time that the constellation size is increased by a 

factor of 4, the thresholds where the CA bounds leave the 

DA bound are increased by 6dB. 

 At low SNR, the lack of symbol knowledge directly affects 

the estimation on 
l

 . This illustrates why the NDA CRBs 

increase quicker at low SNR than at high SNR. Note that 

the CRBs of the BPSK do not merge with the CRBs of the 

other two-dimensions constellations. 

-5 0 5 10 15 20 25 30

-30

-25

-20

-15

-10

-5

0

5

10

SNR (dB)

M
S

E
 (

d
B

)

 (  = 0.03rad, 
w

2
 = 0.005rad

2
,  L = 120 )

 

 

BPSK,  NDA On-Line

BPSK,  CA On-Line ( r = 1/2 )

BPSK,  NDA Off-Line

BPSK,  CA Off-Line ( r = 1/2 )

QPSK,  NDA On-Line

QPSK,  CA On-Line ( r = 1/2 )

QPSK,  NDA Off-Line

QPSK,  CA Off-Line ( r = 1/2 )

 DA On-Line

 DA Off-Line

 
Fig. 3  HCRBs in the center of the block ( 6 0l  ) for BPSK and QPSK. 
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Fig. 4  Off-Line CA HCRBs in the center of the block ( 6 0l  ). 

VI. 5BCONCLUSION 

In this paper, we have applied the general form of the CA 

BCRB and of the CA HCRB in order to evaluate the ultimate 

performance of a dynamical phase estimator. This illustrates the 

respective possible advantage of decoding and of the off-line 

scenario on the synchronization performance. In particular, 

besides the off-line synchronization gain, there is some space 

for additional CA synchronization gain at low SNR. 
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