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On the Hybrid Crarar-Rao bound and its

application to dynamical phase estimation

Stephanie Bay, Benoit Geller, Alexandre RenalMember, IEEE Jean-Pierre Barbot and Jean-Marc

Brossier

Abstract

This letter deals with the Craan-Rao bound for the estimation of a hybrid vector with both random and
deterministic parameters. We point out the specificity of the case when the deterministic and the random vectors
of parameters are statistically dependent. The relevance of this expression is illustrated by studying a practical phase
estimation problem in a non data-aided communication context.

I. INTRODUCTION

A natural problematic when designing an estimator is the evaluation of its performance. Lower bounds on the
Mean Square Error (MSE) mainly answer this question and the well known &+Rao Bound (CRB) is widely
used by the signal processing community. Depending on assumptions on the parameters, the CRB has different
expressions. When the vector of parameters is assumed to be deterministic, we obtain the standard CRB [1] and
when the vector of parameters is assumed to be random with @nori probability density function (pdf), we
obtain the so-called Bayesian CRB [2].

At the end of the eighties, an extension combining both the standard and the Bayesian CRBs has been proposed
[3]. Indeed, in some practical scenarios, it is natural to represent the parameter vector by a deterministic part and
by a random part. This bound has thus been called the Hybrid CRB (HCRB) and a nice tutorial can be found in [4].
Until now, results available in the literature essentially focussed on the case where the deterministic part and the

random part of the parameter vector are assumed to be statistically independeafy(sEqgn. (5) in [3], Eqn. (13)
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in [4] and Eqn. (13) in [5]). To the best of our knowledge, a closed-form expression of the HCRB with a statistical
dependence between the deterministic and the random parameters has never been reported in the literature. The
goal of this paper is then twofold. First, in Section Il, we remind the structure of the HCRB and we point out

the specificity of the case when the deterministic part and the random part of the parameter vector are statistically
dependent. Second, in Section Ill, motivated by this analysis we give a closed-form expression of the proposed

bound in the practical case of a dynamical phase subject to a linear drift in a non data-aided communication context.

[I. THE HYBRID CRAMER-RAO BOUND
A. Background

Let p = (uf udT)T € R™ be the parameter vector that we have to estimate. This vector is split into two sub-
vectorsp, and p,. wherep,; is assumed to be @ — m) x 1 deterministic vector angk,. is assumed to be m x 1
random vector with ara priori pdf p(,.). The true value ofu, will be denotedu’. We considerji(y) as an

estimator ofp wherey is the observation vector. The HCRB satisfies the following inequality on the MSE

By lus [(ﬂ(Y) — ) (ly) — )" } >H ™ (1)), 1)

Iy
whereH (u}5) € R™*" is the so-called Hybrid Information Matrix (HIM) defined as [3]

H(13) = By, g |~ M log(y. il )., | @

2

where [AY], = o0

When the deterministic and the random parts of the parameter vector are assumed to be independent, and after

some algebraic manipulations, the HIM can be rewritten as (see [4], Eqn. (18))

* * E r _A”: 1ng(p’r) Om n—m
H(py) = By, [F(php)]+ | A ] o) ®)

O(nfm)xm O(nfm)x(nfm)

where

Fug ) = Eyjuyp, [— AL logp(y| pas 11y ”3} : (4)

With this aforementioned structure, it is straightforward to reobtain the standard and the Bayesian CRBs. Indeed,

u;D_l’ ©

-1

H' = (Ey,ur {_Aﬁ: 10%?(3’“%)} +E,, [-Alrlog p(p,r)D , (6)

if p = p, we have

H™ () = (Eym; {— Al log p(y| pa)

which is the standard CRB, and, jf = p,., we have

which is the Bayesian CRB.
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B. Extension whem, and p,; are statistically dependent

We now assume a possible statistical dependence betweand 1;. In other wordsy,. is now assumed to be
am x 1 random vector with am priori pdf p (p,.| ) # p (1,

Based on the HIM definition given by Eqn. (2) and expending the log-likelihodekas (y, .. |1);) = log p (v}, pr)+
log p (p,.|}), we obtain the following HIM

H (1d) = E gy [F(RG 0)] + B g | = Al log p (1 1a) “;} : @

whereF (u%, p,.) is given by Eqn. (4).

In order to explicitly show the modification in comparison with the HIM given by Eqn. EB)uj;) can be

ny )] . (8)
2]

Obviously, if we assume (.| ;) = p (i) in this expression, we straightforwardly reobtain Eqn. (3).

rewritten as follows

—Alrlog p(p,|p) — Afinlog p (p,|pey)

T
b)) = Alitlog p (i)

H(py) = EuTlu* [F(uy, p,)] + E s
' LN (- Ak os p (1)

Based on this structure, one now has to prove that there is still an inequelitg lower bound on the MSE,

mwqumw—uNmm—uf }ZHlo@L ©)

2]
whenH (p}) is given by Eqn. (8).

Proof: Following the idea of [4] to prove the inequality (1), one defines a veltsuch that

V,lo . .
o n fgp(y olia)l s 7 (10)
T
— 9 d
whereV,, = (5 - g )
Consequently, the non-negative definite mat@x ;) = Ey o u; [h hT] can be decomposed as the following
block matrix
. H(p3)  L(k)
Gun=|{ " . (11)
L™ (13) R(my)
whereR (u}) is the covariance matrix of (y), i.e.,
R (1) = By g | (40— ) () — "] ] 12
and, whereL (u}) is given by
. . T
L (ki) = Ey o, s [Vu log p (¥, by #a)l 4 (u (y) = ul%) ] : (13)
SinceG (p}) > 0, its Schur complement satisfies
R (pg) > L7 (ui) H ' (i) L (p3) - (14)
It is straightforward to show that, for an unbiased estimator w.r.t. theppgf, pt,.| 1), L (1) = Luxn. [ |

Consequently, the inequality (9) is proved aHd ! (u*) is a lower bound on the MSE.
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IIl. HCRB FOR A DYNAMICAL PHASE ESTIMATION PROBLEM

In [6], we have proposed a closed-form expression of the Bayesian CRB for the estimation of the phase offset for
a BPSK transmission in a non data-aided context. In this section, we extend these previous results by providing a
closed-form expression of the HCRB for the estimation of the phase offset and also of the linear drift. In this more
realistic scenario, we show that we have to take into account the statistical dependence between the parameters

and, consequently, the HCRB given by Eqn. (3) is not adapted to this problem.

A. Observation and state models

We consider a linearly modulated signal, obtained by applying to a square-root Nyquist transmit filter an unknown
symbol sequenca = (a; - --aK)T taken from a unit energy BPSK constellation. The signal is transmitted over
an additive white Gaussian noise channel. The output signal is sampled at the symbol rate which yields to the
observations
yr = ape’?* +ny, with k=1.. K, (15)

where {n;.} is a sequence of i.i.d., circular, zero mean complex Gaussian noise variables with variarte
consider that the system operates in a hon Data-Aided synchronization neqdég transmitted symbols are i.i.d.
with P, (a), = £1) = 3.

In practice, several sources of distortions affect the phase. An efficient model representing these effects is the
so-called Brownian phase with a linear drift widely studied in the literature @eg,[7] [8] [9]). This model
takes into account a constant frequency shift between the oscillators of the transmitter and of the receiver, the
uncertainities due to clocks, and, the jitters of oscillators. The Brownian phase model with a linear drift is given
as follows

O, =0p_1+E4+w, withk=2.. K, (16)

where, for any index:, {0} is the sequence of phases to be estimafepresents the deterministic unknown
linear drift with true value¢*, and where{wy} is an i.i.d. sequence of centered Gaussian random variables with
known variancer?,.

The parameter vector of interest is then made up of both random and deterministic parameteé;:s,T ud)T

wherep, = 6 = (61 ---0x)" andu,; = £&. Moreover, from Eqn. (16), it is clear that(8|&*) # p (8).

B. Derivation of the HCRB

For notational convenience, we drop the dependence of the different matrige’s -er¢™ in the remainder of

this paper. From Eqn. (8), the HINMI can be rewritten into a block matrild = Hi oy , Where,
ho;  Hao
Hi =Ey g [— Ablog p(y|0,€) E*} +Ege- [-Aflog p(0]¢7)],
hio = hl, =By g/ [— A log p(yIG@)H +Egjer [— A log p<0€)u : (17)
Hyy =Ey g/ {— A log p(yl9,§)‘£l +Egje- {— At log MGK)LJ :
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These blocks only depend on the log-likelihodds p (y|0,£*) andlog p (6| £*). Let us sety = (y; - ~-yK)T
and assume that the initial phagége does not depend ofy i.e, p (61|¢*) = p(61). Using Eqn. (15) and (16},e,,

the Gaussian nature of the noise and the equiprobability of the symbols, one has

log p(v10,€") = 32, (—log (mo2) — HUe 4 log (cosh (ZR{yee}))) .
log p (8]€") = logp (61) + (K — 1)log k) — ST, Ot =60

w

(18)

« Expression ofH;;: assuming that we have no prior knowledge,, Eq, {Agi logp(ﬁl)} =0, it is shown in

[6] (due to the order one Markov structure exhibited by Eqn. (16)) Hiat takes the following tridiagonal

structure
A+1 1 0 - 0
1 A 1
Hy =0 0 0 ) (19)
1 A 1
0 - 01 A+1

whereb = —1/02,, and, whered = —o2 Jp — 2 with Jp =E g|¢- [ngﬁ logp(ykwk,f*)}.

« Expression ofh;s: since, from Eqn. (18)Jog p(y|0,£™) is independent of™, Ag logp(y|0,§)‘£* = 0.
Consequently, '

hyp = Ege: [ A log p(0|f)’5*] . (20)
Using the state model, we have

A logp (6]€) L

2

e %
AZ< 10gp (01¢)) 3 (21)
N 10gp(9|§)‘£* —0forkef{2,... K—1}.

Applying the expectation operatdig .- [.], we obtain

T
i =k Onexs ok ) - (22)
« Expression of Hyy: since, from Eqn. (18)log p(y|6,&*) is independent ot™, Ag logp (y|0,¢) e = 0.
Consequently,
¢ K—1
Hyy =Eger |— Azlog p(0]€) | T T2 (23)

« Expression of the HCRBve now give the expression #~! which bounds the MSE. Thanks to the block-

matrix inversion formula, we have

- H '+ Vg —1iH;'hp
PRI @
—xhiHyy Y

— —1 —1 —1
where )\ = Izil — h,{QHll hi; and Vg = %Hll h12h,{2H11 .
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We start to compute\ corresponding to the inverse of the minimal bound on the MSE.dDue to the

particular structure of matriced;; andh;, (Egn. (19) and (22)), we obtain

3= (], - () @5)
From Eqn. (19), thanks to the cofactor expression in the matrix inversion formula we have for anyjndex
[Hl‘ll]1 ﬁ;ul‘ (dx—k + bdr_k—1) wheredy, is the determinant of the following x k& matrix Dy,
A 1 0 -~ 0
1 A 1
Dr.=b] o 0 (26)
1 A 1
0 0 1 A

The sequencgd,} satisfies the following recursive equatiah = Abdy_ 1 — b?dyx_o with dy = 1 and

dy = bA. dj, can thus be written ady, = p, (11)" + p, (r2)" wherery, 5, p, andp, are given by

=2 (A+VAZ—4), r=5(A-VAZ-1),

_ VA2Z—4+A _ VJA2—4-A (27)
Pr= "3/az3 > P2 = Hyaz—a -
Consequently,
B bkfl
[Hnl]l’k = [Ho| (017'{( P+ b) A+ s F T (ra b)), (28)
and
K-1 2 _ _ _
A= o2 o |H1 | (Plr{( 2(ri+b) + P2T§ > (ra +b) —b" 1) . (29)
From the definition ofV 5, we have
1 2
[VK]kk \o 4 ([Hll] [Hll ]1,K+1—k) : (30)
Using Eqn. (24), (28), and (30), we obtain, for any indexthe analytical expression of the HCRB diagonal
elements
H71 1 b b 2K3 b2 k—2 K—k—1 Kkle
[ ]k,k |H11| P ( "’7"1) T4 p3(b+ra)?r A—2(T1 ) +ry )

1 _ k- —k—
o Y l(pl (1) o)+ pp (12) T (b))

+ bk (pl (r)* 72 (b4 11) +py (r2)" 2 (b + 7"2))]2 : (31)

Remark:Note that, if Egn. (3) was used instead of Eqgn. (8), the HIM would not be invertible.

C. Simulation results

We now illustrate the behavior of the HCRB versus the Signal-to-Noise Ratio (SNR) definaééd bye consider
a block of K = 40 BPSK transmitted symbols. For two distinct phase-noise variances=(0.1 rad® and o —
orad’), Figure 1 superimposes on one side the HCRB (see Eqn. (31)), the Data-Aided I<LQRB J%) and
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the BCRB (see Eqgn. (21) in [6]) ofi,. For the same scenario, Figure 2 superimposes on one side the HCRB (see
Eqgn. (25)) and the Data-Aided HCRB @n

» At high SNR, we first notice that HCRBconverges to its horizontal asymptote givenﬁ%1 which is the
standard CRB wheid is assumed to be known. The observation noise compared to the phase noise is then
not significant enough to disturb the estimationépiconsequently HCRBdepends only on the phase noise
and on the number of observations. Concerning the bounds.oftCRBy, and BCRB, both have the same
asymptote given by%i which is the Modified CRB (MCRB) for one observation (see [10]). It means that,
at high SNR, the observationy is self-sufficient to estimaté, and the error ort does not disturb the
performance o . Moreover, the HCRB logically tends to the Data-Aided HCRB.

» For median SNR, HCRB, and HCRRE leave their respective asymptote. HCRBis still lower bounded by
the BCRB and upper bounded by the high-SNR asymptote. This stems from the fact that taking into account
a block of observations instead of one observation necessarily improves the performance. However, for large
o2 values é.g, 02, = 0.1rad’), HCRBy,. stays close to the MCRB because the correlation between the phase
offsetsdy is less significant than the information brought by the observajignMoreover, whery? tends
to 0, HCRBy,, is above the BCRB because performance is now limited by the accuracy on the parameter

« At low SNR, n;, is preponderant compared to,. Both HCRB: and HCRB,. do not depend ow?: the
lack of knowledge org directly affects the estimation ofyx. As expected, the knowledge of the symbols
(Data-Aided HCRB) leads to a better estimationfoand €.

IV. CONCLUSION

In this paper, we have studied the hybrid CarRao bound when the random and the deterministic parts of the
parameter vector are statistically dependent. We have applied this bound in order to evaluate the performance of
a dynamical phase estimator where the linear drift is unknown in a non data-aided context. In particular, we have

illustrated the effect of this unknown linear drift on the phase estimation performance.
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