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Abstract

The aim of this article is to study the Hamilton Jacobi Bellman (HJB) approach for state-constrained control
problems with maximum cost. In particular, we are interested in the characterization of the value functions of such
problems and the analysis of the associated optimal trajectories, without assuming any controllability assumption.
The rigorous theoretical results lead to several trajectory reconstruction procedures for which convergence results
are also investigated. An application to a five-state aircraft abort landing problem is then considered, for which
several numerical simulations are performed to analyse the relevance of the theoretical approach.

Keywords: Hamilton-Jacobi approach, state constraints, maximum running cost, trajectory reconstruction, air-
craft landing in windshear.

1 Introduction
Let T > 0 be a finite time horizon and consider the following dynamical system:

ẏ(s) = f(s,y(s),u(s)), a.e. s ∈ (t, T ), (1a)
y(t) = y, (1b)

where f : [0, T ] × Rd × U → Rd is a Lipschitz continuous function, U is a compact set, and u : [0, T ] → U is
a measurable function. Denote yu

t,y the absolutely continuous solution of (1) associated to the control function u

and with the intial position y at intial time t ∈ [0, T ]. Let K ⊂ Rd be a given non-empty closed set and consider
the following control problem and its associated value function:

ϑ(t, y) := min
u∈L∞((t,T ),U)

{
max
s∈[t,T ]

Φ(s,yu
t,y(s))

∨
ϕ(yu

t,y(T ))

∣∣∣∣ yu
t,y(s) ∈ K ∀s ∈ [t, T ]

}
,

with the convention that inf ∅ = +∞ and where the notation a
∨
b stands for max(a, b). The cost functions

Φ : [0, T ]× Rd → R and ϕ : Rd → R are given Lipschitz continuous functions.
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In the case when K = Rd, control problems with maximum cost have been already studied in the literature,
for instance in [6, 7] where the control problem with maximum cost is approximated by a sequence of control
problems with Lp-cost. Then the value function is characterized as unique solution of a Hamilton-Jacobi-Bellman
(HJB) equation. In [24], the case of lower semi-continuous cost function has been considered and the epigraph of
the value function is characterized as a viability kernel for a specific dynamics.

In the general case where the set of state constraints K is a non-empty closed subset of Rd (K ( Rd), the value
function is merely l.s.c and its characterization as unique solution of a HJB equation requires some assumptions
that involve an interplay between the dynamics f and the set of constraints K. A most popular assumption, called
inward pointing condition, has been introduced in [27] and requires, at each point of the boundary of K, the
existence of a control variable that lets the dynamics points in the interior of the set K. This assumption, when it is
satisfied, provides a nice framework for analysing the value function and also the optimal trajectories. However, in
many applications the inward pointing condition is not satisfied and then the characterization of the value function
as solution of a HJB equation becomes much more delicate, see for instance [1, 19].

Here, we shall follow an idea, introduced in [1] that consists of characterizing the epigraph of ϑ by means of
a Lipschitz continuous value function solution of an adequate unconstrained control problem. Actualy, its known
that when the value function is only l.s.c., the characterisation of its epigraph becomes much more relevant than the
characterization of the graph (see for instance [4, 13, 14]). Here, we show that the epigraph of ϑ can be described
by using a Lipschitz continuous value function of an auxiliary control problem free of state constraints. Moreover,
the auxiliary value function can be characterized as the unique Lipschitz continuous viscosity solution of a HJB
equation. This HJB equation is posed on a neighborhood Kη of K with precise and rigorous Dirichlet boundary
conditions. This result turns out to be very important for numerical purposes.

Another contribution of the paper focuses on the analysis of the optimal trajectories associated with the state
constrained optimal control problem with maximum cost. Several procedures for reconstruction of optimal tra-
jectories are discussed. The auxiliary value function w being a Lipschitz continuous function, we show that the
approximation procedures based on w provide a convergent sequence of sub-optimal trajectories for the original
control problem. More precisely, we extend the result of [25] to the optimal control problem with maximum
criterion and with state constraints (without imposing any controllability assumption on the set of constraints K).

The theoretical study of this paper is then applied to an aircraft landing problem in presence of windshear.
This meteorological phenomenon is defined as a difference in wind speed and/or direction over a relatively short
distance in the atmosphere. This change of the wind affects the aircraft motion relative to the ground and it has
more significant effects during the landing case. When landing, windshear is a hazard as it affects the aircraft
motion relative to the ground, particularly when the winds are strong [11]. In a high altitude, the abort landing
is probably the best strategy to avoid the failed landing. This procedure consists in steering the aircraft to the
maximum altitude that can reach in order to prevent a crash on the ground. In the references [22], [21], the
authors propose a Chebyshev-type optimal control for which an approximate solution for the problem is derived
along with the associated feedback control. This solution was improved in [11] and [12] by considering the
switching structure of the problem that has bang-bang subarcs and singular arcs.

Here, we consider the same problem formulation as in [22, 21, 11, 12]. The Hamilton Jacobi approach is used
in order to characterize the value function and compute its numerical approximations. Next, we will reconstruct the
associated optimal trajectories and feedback control using different algorithms of reconstruction. Let us mention
some recent works [10, 2] where numerical analysis of the abort landing problem has been also investigated with
a simplified model involving four-dimensional controlled systems. Here we consider the full five-dimensional
control problem as in [11, 12]. Many simulations will be included in this paper involving data of a Boeing 727
aircraft model, see [11].

Notations. Throughout this paper, | · | is the Euclidean norm and 〈·, ·〉 is the Euclidean inner product on RN
(for any N ≥ 1). Let E be a Banach space, we denote by BE the unit open ball {x ∈ E : ‖x‖E ≤ 1} of E.

For any set K ⊆ Rd, K and
◦
K denote its closure and interior, respectively. The distance function to K

is dist(x,K) = inf{|x − y| : y ∈ K}. We will also use the notation dK for the signed distance to K (ie.,
dK(x) = −dist(x,K) if x ∈ K otherwise dK(x) = dist(x,K)).

For any a, b ∈ R, the notation a
∨
b stands for the max(a, b).
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2 Setting and formulation of the problem
Let T > 0 be a fixed time horizon and consider the differential system obeying{

ẏ(s) := f(s,y(s),u(s)), a.e s ∈ (t, T ),

y(t) := y,
(2)

where u(·) is a measurable function and the dynamics f satisfies:

(H1) f : [0, T ] × Rd × U → Rd is continuous. For any R > 0, ∃LR ≥ 0 such that for every u ∈ U and
s ∈ [0, T ]:

|f(s, y1, u)− f(s, y2, u)| ≤ LR(|y1 − y2|) ∀y1, y2 ∈ Rd with |y1| ≤ R, |y2| ≤ R.

A measurable function u : [0, T ]→ Rm is said admissible if u(s) ∈ U , where U is a given compact subset of
Rm. The set of all admissible controls will be denoted by U :

U :=
{

u : (0, T )→ Rm measurable, u(s) ∈ U a.e.
}
.

Under assumption (H1), for any control u ∈ U , the differential equation (2) admits a unique absolutely
continuous solution in W 1,1([t, T ]). The set of all absolutely continuous solutions of (2) on [t, T ], starting from
the position y at initial time t and associated to control functions in U , is defined by:

S[t,T ](y) := {yu
t,y ∈W 1,1([t, T ]), yu

t,y solution of (2) associated to u ∈ U}.

Let K ⊂ Rd be a closed subset of Rd. For any y ∈ Rd and t ∈ [0, T ], a trajectory y ∈ S[t,T ](y) will be said
admissible on [t, T ] if and only if:

∀ s ∈ [t, T ], y(s) ∈ K.

The set of all admissible trajectories on [t, T ] starting from the position y will be denoted by SK[t,T ](y):

SK[t,T ](y) := {y ∈ S[t,T ](y), s.t. ∀ s ∈ [t, T ], y(s) ∈ K}.

This set may be empty if no trajectory can remain in the set K during the time interval [t, T ]. Let us recall (see
[3]) that under assumption (H1), the set-valued map y  S[t,T ](y) is locally Lipschitz continuous in the sense
that for any R > 0, there exists some L > 0, S[t,T ](y1) ⊂ S[t,T ](y2) + L|y1 − y2|BW 1,1([0,T ]) for all y1, y2 ∈ Rd
with |y1| ≤ R and |y2| ≤ R. This is no longer the case for the set-valued map y  SK[t,T ](y) even for simple sets
K and linear dynamics f . Moreover, if we assume that:

(H2) for every s ∈ [0, T ] and y ∈ Rd, the set f(s, y, U) = {f(s, y, u), u ∈ U} is a convex set

then by Filippov’s theorem, for every y ∈ Rd, the set of trajectories S[t,T ](y) is a compact subset ofW 1,1 endowed
wit the C0-topology.

Now, consider cost functions Φ : [0, T ]× Rd → R and ϕ : Rd → R satisfying:

(H3) Φ is Lipshitz continuous function on [0, T ]× Rd and ϕ is Lipschitz continuous on Rd:

∃LΦ ≥ 0, |Φ(s, y)− Φ(s′, y′)| ≤ LΦ(|s− s′|+ |y − y′|) ∀s, s′ ∈ [0, T ], ∀y, y′ ∈ Rd;
∃Lϕ ≥ 0, |ϕ(y)− ϕ(y′)| ≤ Lϕ|y − y′| ∀y, y′ ∈ Rd.

In this paper, we are interested in the following control problem with supremum cost:

ϑ(t, y) := inf

{
max
s∈[t,T ]

Φ(s,yu
t,y(s))

∨
ϕ(yu

t,y(T ))
∣∣∣ yu

t,y ∈ SK[t,T ](y)

}
, (3)
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where ϑ : [0, T ] × Rd → R is the value function, and with the classical convention that inf{∅} := +∞. The
aim of this paper is to use Hamilton-Jacobi-Bellman (HJB) approach in order to describe the value function ϑ
and to analyze some algorithms for reconstruction of optimal trajectories. Note that, in general (when K 6= Rd),
the value function ϑ is discontinuous and its caracterization as unique solution of a HJB equation may not be
possible without further controllability assumptions, see [24, 27, 20, 25, 18, 9, 19]. In the present work, we shall
follow an idea introduced in [1] to describe the epigraph of ϑ by using an auxiliary optimal control problem free
of constraints whose value function is continuous.

3 Main results: Characterization of ϑ and optimal trajectories

3.1 Auxiliary control problem free of state-constraints

First, consider the following augmented dynamics f̂ for s ∈ [0, T ], u ∈ U and ŷ := (y, z) ∈ Rd × R:

f̂(s, ŷ, u) =

(
f(s, y, u)

0

)
.

Let ŷ(·) := (yu
t,y(·), zut,y,z(·)) (where zut,y,z(·) ≡ z) be the associated augmented solution of:

˙̂y(s) = f̂(s, ŷ(s),u(s)), s ∈ (t, T ), (4a)
ŷ(t) = (y, z)T . (4b)

Define the corresponding set of feasible trajectories, for ŷ = (y, z) ∈ Rd × R, by:

Ŝ[t,T ](ŷ) := {ŷ = (yu
t,y, z

u
t,y,z), ŷ satisfies (4) for some u ∈ U}. (5)

Remark 3.1. Under the assumptions (H1) and (H2), for every ŷ ∈ Rd × R, the set Ŝ[0,T ](ŷ) is a compact subset
of W 1,1([0, T ]) for the topology of C([0, T ];Rd+1) (see [3]).

Following an idea introduced in [1], we define an auxiliary optimal control problem without state constraints
whose value function can help to compute ϑ in an efficient manner. For this, we consider g : Rd → R a Lipschitz
continuous function characterizing the constraints set K as follows:

∀y ∈ Rd, g(y) ≤ 0⇔ y ∈ K. (6)

In the sequel, we denote by Lg > 0 the Lipschitz constant of g. Note that a Lipschitz function g satisfying
(6) always exists since K is a closed set (for instance the signed distance dK(·) to K is a Lipschitz function that
satisfies the condition (6)). Therefore, for u ∈ U , the following equivalence holds:

yu
t,y(s) ∈ K,∀s ∈ [t, T ] ⇔ max

s∈[t,T ]
g(yu

t,y(s)) ≤ 0. (7)

Now, consider the auxiliary control problem and its value function w:

w(t, y, z) := inf

{
max
s∈[t,T ]

Ψ(s,y(s), z(s))
∨(

ϕ(y(T ))− z(T )
) ∣∣ ŷ = (y, z) ∈ Ŝ[t,T ]((y, z))

}
(8)

where for (y, z) ∈ Rd × R, we define the function Ψ as:

Ψ(s, y, z) := (Φ(s, y)− z)
∨
g(y). (9)

By definition, the function Ψ is Lipschitz continuous under assumption (H3). In the sequel, we shall denote by
LΨ a bound of the Lipschitz constant for Ψ. The following proposition shows that the level sets of this new value
function w characterize the epigraph of ϑ.
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Proposition 3.2. Assume (H1), (H2) and (H3). The value function w is related to ϑ by the following relations:
for every (t, y, z) ∈ [0, T ]× Rd × R.

(i) ϑ(t, y)− z ≤ 0⇔ w(t, y, z) ≤ 0,

(ii) ϑ(t, y) = min

{
z ∈ R , w(t, y, z) ≤ 0

}
.

Proof. (i) Assume ϑ(t, y) ≤ z. This implies first that SK[t,T ](y) is not empty and, by (H1)-(H2), it is a compact
subset of W 1,1(0, T ) (endowed with C0-topology). Thus there exists an admissible trajectory y ∈ SK[0,T ](y) such
that,

max
t≤s≤T

(
Φ(s,y(s))− z

)∨(
ϕ(y(T ))− z

)
= ϑ(t, y)− z ≤ 0.

By using (7), we obtain:

w(t, y, z) ≤ max
t≤s≤T

(
Φ(s,y(s))− z

)∨
max
t≤s≤T

g(y(s))
∨(

ϕ(y(T ))− z
)
≤ 0.

Conversely, assume w(t, y, z) ≤ 0. By remark 3.1, there exists a trajectory ŷ = (y, z) ∈ Ŝ[t,T ](y, z) starting from
ŷ = (y, z) such that

0 ≥ w(t, y, z) = max
t≤s≤T

Ψ(s,y(s), z)
∨

(ϕ(y(T ))) ,

which gives: (
max
t≤s≤T

Φ(s,y(s))
∨
ϕ(y(T ))

)
≤ z, and max

t≤s≤T
g(y(s)) ≤ 0.

It follows that y is admissible on [t, T ] and ϑ(t, y) ≤ z. This ends the proof of (i). Assertion (ii) follows directly
from (i).

Remark 3.3. Note that the value function ϑ(t, .) is l.s.c. and then its epigraph is a closed set. Moreover, from
proposition 3.2, for every t ∈ [0, T ]:

Epi
(
ϑ(t, .)

)
=

{
(y, z) ∈ K × R | w(t, y, z) ≤ 0

}
.

The value function w enjoys more regularity properties. It is then more interesting to caracterize first w and then
to recover the values of ϑ from those of w.

Proposition 3.4. Assume (H1) and (H3) hold.

(i) The value function w is locally Lipschitz continuous on [0, T ]× Rd × R.
(ii) For any t ∈ [0, T ], h ≥ 0, such that t+ h ≤ T ,

w(t, y, z) = inf
ŷ:=(y,z)∈Ŝ[t,t+h](y,z)

{
w(t+ h,y(t+ h), z)

∨
max

s∈[t,t+h]
Ψ(s,y(s), z)

}
.

(iii) Furthermore, the function w is the unique continuous viscosity solution of the following HJ equation:

min

(
− ∂tw(t, y, z) +H(t, y,∇yw) , w(t, y, z)−Ψ(t, y, z)

)
= 0 in [0, T [×Rd × R, (10a)

w(T, y, z) = Ψ(T, y, z)
∨(

ϕ(y)− z
)

in Rd × R, (10b)

where the Hamiltonian H is defined, for y, p ∈ Rd and t ∈ [0, T ] by:

H(t, y, p) := sup
u∈U

(
− f(t, y, u) · p

)
, (11)

and the notations ∂tw and ∇yw stand for the partial derivatives of w with respect to the variable t and y, respec-
tively.
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Proof. The proof of the local Lipschitz continuity can be obtained as in [1, Proposition 3.3].
The dynamic programming principle (stated in (ii)) is a classical result and its proof can be found in [7, 1]

where a HJB equation is also derived for the value function associated to a control problem with maximum cost.
Besides, the uniqueness result is shown in [1, Appendix A].

Finally, note that the characterization of the function w does not require assumption (H2) to be satisfied. If
(H2) happens to be fulfilled, then Ŝ[t,t+h](y, z) is a compact subset of W 1,1([t, t+h]) and therefore the minimum
in the dynamic Programming principle, stated in Proposition 3.4(ii), is achieved.

3.2 A particular choice of g
The main feature of the auxiliary control problem consists on that it is free of state constraints. However, the
new control problem involves one more state component, and the HJB equation that characterizes w is defined on
Rd × R. To restrict the domain of interest for w to a neighbourhood of K × R, it is possible to define w with a
more specific function g so that the auxiliary value function w keeps a constant value outside a neighbourhood of
K × R.

Indeed, in all the sequel, let η > 0 be a fixed parameter and define a neighbourhood Kη of K by:

Kη := K + ηBRd . (12)

Consider a Lipschitz continuous function gη satisfying, for y ∈ Rd:

gη(y) ≤ 0⇔ y ∈ K, gη(y) ≤ η ∀y ∈ Rd and gη(y) = η ∀y /∈ Kη. (13)

Such a Lipschitz function always exists since K is a closed set. For instance, gη can be defined as: gη(y) :=
dK(y)

∧
η for any y ∈ Rd.

Now, we consider also a truncation of Ψ given by

Ψη(s, y, z) =
(

(Φ(s, y)− z)
∧
η
)∨

gη(y). (14)

Note that with this definition and with (9), we have:

Ψη(s, y, z) = Ψ(s, y, z)
∧
η.

Furthermore, introduce a truncated final cost ϕη by:

ϕη(y, z) =
(
ϕ(y)− z

)∧
η. (15)

Finally, we define the value function wη , for ŷ = (y, z) ∈ Rd × R, as:

wη(t, y, z) := inf
(y,z)∈Ŝ[t,T ](ŷ)

[
max
s∈[t,T ]

Ψη(s,y(s), z(s))
∨
ϕη(y(T ), z(T ))

]
. (16)

Note that with the above definitions, the new value function wη satisfies:

wη(t, y, z) = w(t, y, z)
∧
η, ∀(t, y, z) ∈ [0, T ]× Rd × R.

The epigraph of ϑ can be also characterized by the function wη , and under assumptions (H1), (H2) and (H3), all
statements of proposition 3.2 are still valid with wη defined as in (16).

Now, let us emphasize that the function wη has been defined in such a way it takes a constant value outsideKη .
This information can be used as a Dirichlet boundary condition in the HJB equation satisfied by w.
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Theorem 3.5. Assume (H1), (H3) hold. Let gη , Ψη and w defined as in (13), (14) and (16).
The value function wη is the unique continuous viscosity solution of the following Hamilton Jacobi equation:

min

(
− ∂twη(t, y, z) +H(t, y,∇ywη) , wη(t, y, z)−Ψη(t, y, z)

)
= 0, in [0, T [×

◦
Kη ×R, (17a)

wη(T, y, z) = Ψη(T, y, z)
∨
ϕη(y, z), in

◦
Kη ×R, (17b)

wη(t, y, z) = η, for all t ∈ [0, T ], y /∈
◦
Kη and z ∈ R. (17c)

Proof. Equations (17a)-(17b) are obtained as in proposition 10-(iii). Let us prove assertion (17c). First , notice
that:

η ≥ wη(t, y, z) ≥ Ψη(t, y, z) ≥ gη(y) ∀t ∈ [0, T ], y ∈ Rd, z ∈ R.

Moreover, by definition of gη , for any y /∈
◦
Kη , we have gη(y) = η. It follows that

wη(t, y, z) = η ∀y /∈
◦
Kη .

This concludes the proof.

Remark 3.6. If the cost function Φ is bounded and satisfies:

Φ(y) ∈ [m,M ], ∀y ∈ Kη,

then, it suffices to consider the variable z in the interval [m,M ]. Indeed, in this case, we still have the relation:

ϑ(t, y) = inf
{
z ∈ [m,M ] | wη(t, y, z) ≤ 0

}
In addition, the function wη is the unique continuous viscosity solution of the following HJ equation:

min

(
− ∂twη(t, y, z) +H(t, y,∇ywη), wη(t, y, z)−Ψη(t, y, z)

)
= 0 in [0, T [×

◦
Kη ×[m,M ],(18a)

wη(T, y, z) = Ψη(T, y, z)
∨
ϕη(y, z) in

◦
Kη ×[m,M ], (18b)

wη(t, y, z) = η for all t ∈ [0, T ], y /∈
◦
Kη and z ∈ [m,M ]. (18c)

Let us point on that there is no need for any boundary condition on the z-axis because the dynamics is zero
ż(t) = 0.

Remark 3.7. The function wη depends on the choice of the parameter η. However, the region of interest ({wη ≤
0}) is always the same, for any η > 0, and the characterization of the original value ϑ(t, x) = min{z, wη(t, x, z) ≤
0} holds for any η > 0. In the sequel, we will denote by w any auxiliary value function corresponding to an ade-
quate function g (or gη).

3.3 Case of autonomous control problems: link with the reachability time function
The aim of this subsection is to make a link between the control problem discussed in the previous subsection and
an optimal reachability time that we will define correctly in the following. This link can be established in a general
case, however it turns out to be of a particular interest when the control problem is autonomous. This interest will
be clarified throughout this section. Here, we consider that all the functions involved in the control problem (3) are
time independent (i.e., f(t, x, u) = f(x, u) and Φ(t, x) = Φ(x)), and introduce the sets:

D :=

{
ŷ = (y, z) ∈ Rd+1

∣∣ y ∈ K and ŷ ∈ Epi(Φ)

}
= Epi(Φ) ∩ (K × R),

C := Epi(ϕ).

7



Let us define also the reachability time function T : Rd+1 → [0, T ], which associates to each initial position
ŷ = (y, z) ∈ Rd+1, the first time t ∈ [0, T ] such that there exists an admissible trajectory ŷ ∈ Ŝ[t,T ](ŷ) remaining
in Epi(Φ)

⋂
K and that reaches Epi(ϕ) at time T :

T (y, z) := inf

{
t ∈ [0, T ]

∣∣∣∣ ∃ŷ ∈ Ŝ[t,T ](ŷ) s.t. ŷ(s) ∈ D, ∀s ∈ [t, T ], and ŷ(T ) ∈ C
}
. (19)

Remark 3.8. Let us point out that, from the definition of D, one can easily check that the two following assertions
are equivalent.

(a) there exists ŷ = (y, z) ∈ Ŝ[t,T ](ŷ) such that: ŷ(s) ∈ D for every s ∈ [t, T ] and ŷ(T ) ∈ C;

(b) there exists ŷ = (y, z) ∈ Ŝ[t,T ](ŷ) such that: max
s∈[t,T ]

Φ(s,y(s))
∨
ϕ(y(T )) ≤ z and y(s) ∈ K ∀s ∈ [t, T ].

The following theorem gives a link between the value functions w, ϑ and the reachability time function T .

Theorem 3.9. Assume (H1), (H2) and (H3) hold. Then we have:

(i) T (y, z) = inf
{
t ∈ [0, T ]

∣∣ w(t, y, z) ≤ 0
}
,

(ii) T (y, z) = t⇒ w(t, y, z) = 0,

(iii) ϑ(t, y) = inf
{
z
∣∣ T (y, z) ≤ t

}
.

Proof. Let ŷ = (y, z) be in Rd × R. Let t ∈ [0, T ] such that w(t, y, z) ≤ 0. Then there exists ŷ = (y, z) ∈
Ŝ[t,T ](ŷ) such that: max

s∈[t,T ]
Φ(y(s)) ≤ z and y(s) ∈ K for every s ∈ [t, T ]. This implies that there exists

ŷ = (y, z) ∈ Ŝ[t,T ](ŷ) such that:
ŷ(s) ∈ D, ∀s ∈ [t, T ],

which proves that T (y, z) ≤ t. Therefore, T (y, z) ≤ inf
{
t ∈ [0, T ]

∣∣ w(t, y, z) ≤ 0
}

.
Now, let t := T (y, z) and assume that t < ∞. By definition of T and remark 3.8, there exists an admissible

trajectory ŷŷ = (y, z) ∈ Ŝ[t,T ](ŷ) such that

max
s∈[t,T ]

Φ(y(s))− z ≤ 0, ϕ(y(T ))− z ≤ 0, and max
s∈[t,T ]

g(y(s)) ≤ 0.

This implies that w(t, y, z) ≤ 0, and then the proof of (i) is completed. Furthermore, for any τ < t we have
w(τ, y, z) > 0 (since otherwise we would have t = T (x, z) ≤ τ ). Then by continuity of w, we conclude that
w(t, y, z) = 0.

It remains to prove claim (iii). For this, note that in the autonomous case the value function w(·, y, z) is
decreasing in time. This property along with assertion (i) yield to:

T (y, z) ≤ t⇐⇒ w(t, y, z) ≤ 0. (20)

Thus, statement (iii) follows from the fact that:

ϑ(t, y) = inf
{
z
∣∣ w(t, y, z) ≤ 0

}
.

Remark 3.10. Statement (iii) of Theorem 3.9 is no more valid if the problem is non-autonomous. Actually, in this
case the equivalence (20) wouldn’t be true and only the implication:

w(t, y, z) ≤ 0 =⇒ T (y, z) ≤ t (21)

is fulfilled. Indeed, the reverse implication of (21) may fail to be true in the non-autonomous case since the function
w(·, y, z) can change signs several times over the time interval (while in the autonomous case the functionw(·, y, z)
can only change sign from positive to negative once during the time interval [0, T ]).
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Remark 3.11. For numerical purposes, the function T presents a major feature as it allows to recover the values
of the original function ϑ. There is no need to store the function w on a grid of d + 2 dimensions (d for the state
components y + variable z and the time variable). Indeed, it is sufficient to store the values of the reachability time
function on a grid of d+ 1 dimensions.

In the following, a link is established between an optimal trajectory associated with the original state-constrained
control problem, an optimal trajectory for the auxiliary control problem, and an optimal trajectory of the optimal
reachability time function.

Proposition 3.12. Assume (H1), (H2) and (H3) hold. Let y ∈ K and t ∈ [0, T ] such that ϑ(t, y) < ∞. Define
z := ϑ(t, y).

(i) Let ŷ∗ = (y∗, z∗) be an optimal trajectory for the auxiliary control problem (8) on [t, T ] associated with the
initial point (y, z). Then, z∗(s) ≡ z on [t, T ], and the trajectory y∗ is optimal for the control problem (3) on [t, T ]
associated to the initial position y.

(ii) Assume that t = T (y, z). Let ŷ∗ = (y∗, z∗) be an optimal trajectory for the reachability problem (19)
associated with the initial point (y, z) ∈ K × R. Then, ŷ∗ is also optimal for the auxiliary control problem (8).

Proof. Let (y, z) ∈ K × R such that ϑ(t, y) = z.
(i) Let ŷ∗ = (y∗, z∗) be an optimal trajectory for the auxiliary control problem (8) associated with the initial

point (y, z) ∈ K × R. Using proposition 3.2, we have that

ϑ(t, y) = z ⇒ w(t, y, z) ≤ 0.

It follows that

w(t, y, z) = max
s∈[t,T ]

Ψ(y∗(s), z)
∨

(ϕ(y∗(T )− z) ≤ 0.

Using the definition of Ψ, we get,

max
s∈[t,T ]

Φ(y∗(s)) ≤ z, ϕ(y∗(T )) ≤ z and max
s∈[t,T ]

g(y∗(s)) ≤ 0.

Since ϑ(t, y) = z, it follows that:

max
s∈[t,T ]

Φ(y∗(s))
∨
ϕ(y∗(T )) ≤ ϑ(t, x) and y∗(s) ∈ K, ∀s ∈ [t, T ].

By definition of ϑ one can conclude that

ϑ(t, x) = max
s∈[t,T ]

Φ(y∗(s))
∨
ϕ(y∗(T )) and y∗(s) ∈ K, ∀s ∈ [t, T ].

Therefore, y∗ is an optimal trajectory for (3) with the initial position y and the proof of assertion (i) is achieved.

(ii) Assume that t = T (y, z) and let ŷ∗ = (y∗, z∗) be an optimal trajectory for problem (19) associated with
the initial point (y, z). It follows from the definition of T that,

ŷ∗(s) := (y∗(s), z∗(s)) ∈ D, ∀s ∈ [t, T ], and y∗(T ) ∈ C.

Then, we have,

max
s∈[t,T ]

Φ(y∗(s))
∨
ϕ(y∗(T )) ≤ z, and max

s∈[t,T ]
g(y∗(s)) ≤ 0.

Since ϑ(t, y) = z and by definition of g, we obtain that

max
s∈[t,T ]

Φ(y∗(s))
∨
ϕ(y∗(T )) ≤ ϑ(t, x) and y∗(s) ∈ K, ∀s ∈ [t, T ].

We conclude that y∗ is an optimal trajectory for (3) on the time interval [t, T ] with the initial position y.
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Remark 3.13. For sake of clarity, we have chosen to state proposition 3.12 under the assumption that the value
of ϑ(t, y) is known. By proposition 3.2 and theorem 3.8, we know that this value can be also obtained from the
auxiliary function w and the reachability time function T .

Assertion (i) of proposition 3.12 states that each optimal trajectory for the auxiliary control problem cor-
responds to an optimal solution of the original problem. The converse is also true. More precisely, let y∗ is
an optimal trajectory for the control problem (3) on [t, T ] associated to the initial position y. Then by setting
z∗(s) ≡ z on [t, T ], the augmented trajectory ŷ∗ = (y∗, z∗) is an optimal trajectory for the auxiliary control
problem (8), on the time interval [t, T ], with the initial point (y, z).

3.4 Reconstruction procedure based on the value function
In the case of Bolza or Mayer optimal control problems, reconstruction algorithms were proposed for instance
in [5, Appendix A] or in [26]. In our setting, the control problem involves a maximum cost function, we shall
discuss a reconstruction procedure based on the knowledge of the auxiliary value function w or an approximation
of it. For simplicity, we consider the trajectory reconstruction on the time interval [0, T ]. However, all the results
remain valid for a reconstruction on any subinterval [t, T ].

Consider a numerical approximation fh of the dynamics f such that, for every R > 0, we have:

|fh(t, x, u)− f(t, x, u)| ≤ CRh, ∀t ∈ [0, T ], |x| ≤ R, u ∈ U, (22)

where the constant CR is independent of h ∈ [0, 1]. Hence, an approximation scheme for the differential equation
ẏ(t) = f(t,y(t), u) (for a constant control u, discrete times sk and time step hk = sk+1 − sk) can be written

yk+1 = yk + hkfhk
(sk, yk, u), k ≥ 0. (23)

The case of the Euler forward scheme corresponds to the choice

fh := f.

Higher order Runge Kutta schemes can also be written as (23) and with a function fh satisfying (22). For instance,
the Heun scheme corresponds to the choice

fh(t, y, u) :=
1

2
(f(t, y, u) + f(t+ h, y + hf(t, y, u), u)).

Now, consider also, for each h > 0, a function wh being an approximation of the value function w, and define
Eh be a uniform bound on the error:

|wh(t, y, z)− w(t, y, z)| ≤ Eh, ∀t ∈ [0, T ], |y| ≤ R, |z| ≤ R,

with R > 0 large enough. The function wh could be a numerical approximation obtained by solving a discretized
form of the HJB equation.

Algorithm 1.
Fix y ∈ Rd and z ∈ R. For h > 0 we consider an integer n ∈ N, a partition s0 = 0 < s1 < · · · < sn = T of

[0, T ], denote hk := sk+1 − sk and assume that

max
k

hk ≤ h.

We define the positions (yhk )k=0,...,n, and control values (uhk)k=0,...,n−1, by recursion as follows. First we set
yh0 := y. Then for k = 0, . . . , n− 1, knowing the state yhk we define

(i) an optimal control value uhk ∈ U such that

uhk ∈ argmin
u∈U

wh
(
sk, y

h
k + hk fh(sk, y

h
k , u), z

)∨
Ψ(sk, y

h
k , z) (24)
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(ii) a new state position yhk+1

yhk+1 := yhk + hkfh(sk, y
h
k , u

h
k). (25)

Note that in (24) the value of uhk can also be defined as a minimizer of u → wh
(
sk, y

h
k + hk fh(sk, y

h
k , u), z

)
,

since this will imply in turn to be a minimizer of (24).
We also associate to this sequence of controls a piecewise constant control uh(s) := uhk on s ∈ [sk, sk+1[, and

an approximate trajectory yh such that

ẏh(s) = fh(sk, y
h
k , u

h
k) a.e s ∈ (sk, sk+1), (26a)

yh(sk) = yhk . (26b)

In particular the value of yh(sk+1) obtained by (26a)-(26b) does correspond to yhk+1 as defined in (25) (Notice
that in general yuh 6= yh).

We shall show that any cluster point ȳ of (yh)h>0 is an optimal trajectory that realizes a minimum in the
definition of w(0, x, z). This claim is based on some arguments introduced in [26]. The precise statement and
proof are given in Theorem 3.14 below.

Theorem 3.14. Assume (H1), (H2) and (H3) hold true. Assume also that the approximation (22) is valid and the
error estimate Eh := ‖w − wh‖ satisfies:

Eh/h→ 0 as h→ 0. (27)

Let (y, z) be in Rd × R and let (yhk ) be the sequence generated by Algorithm 1.
(i) The approximate trajectories (yhk )k=0,...,n are minimizing sequences in the following sense:

w(0, y, z) = lim
h→0

(
max

0≤k≤nh

Ψ(sk, y
h
k , z)

)∨
ϕ(yhk , z). (28)

(ii) Moreover, the family (yh)h>0 admits cluster points, for the L∞ norm, when h→ 0. For any such cluster
point ȳ, we have ȳ ∈ S[0,T ](y) and (ȳ, z) is an optimal trajectory for w(0, y, z).

Proof of Theorem 3.14. First, by using similar arguments as in [26], one can prove that assertion (ii) is a conse-
quence of (i). So, we shall focus on assertion (i) whose proof will be splitted in several steps.

For simplicity of the presentation, we shall consider only the case of uniform time partition s0 = 0 ≤ s1 ≤
· · · ≤ T , with step size h = T

n (for n ≥ 1).
Let (y, z) be in Rd × R and consider, for every h > 0, the discrete trajectory yh = (yh0 , · · · , yhn) and discrete

control input uh := (uh0 , · · · , uhn−1) given by Algorithm 1. In the sequel of the proof, and for simplicity of
notations, we shall denote yk (resp. uk) instead of yhk (resp. yk).

Assumption (H1) and (22) imply that there exists R > 0 such that for any h > 0 and any k ≤ n, we have
|yhk | ≤ R. This constant R can be chosen large enough such that every trajectory on a time interval I ⊂ [0, T ],
starting from an initial position yhk would still remain in a ball of Rd centred at 0 and with radius R. We set
MR > 0 a constant such that

|f(s, y, u)| ≤MR for every t ∈ [0, T ], y ∈ BR and u ∈ U.

Step 1. Let us first establish that there exists εh > 0 such that lim
h→0

εh = 0, and

w(s0, y0, z) ≥ w(s1, y0 + hfh(s0, y0, u0), z)
∨

Ψ(s0, y0, z) + hεh − 2Eh. (29)

The dynamic programming principle for w gives (recall that s0 = 0 and y0 = y):

w(s0, y0, z) = min
u∈U

w(s1,y
u
s0,y0(s1), z)

∨
max

θ∈(s0,s1)
Ψ(θ,yu

s0,y0(θ), z)

≥ min
u∈U

w(s1,y
u
s0,y0(s1), z)

∨
Ψ(s0, y0, z). (30)
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Consider u∗0 ∈ U a minimizer of the term (30). By using the convexity of the set f(s0, y0, U) (assumption (H2)),
there exists u∗0 ∈ U such that

∫ s1
s0
f(s0, y0,u

∗
0(s))ds = hf(s0, y0, u

∗
0), and therefore

y0 +

∫ s1

s0

f(s0, y0,u
∗
0(s))ds = y0 + hf(s0, y0, u

∗
0).

Consider the trajectory y
u∗0
s0,y0 solution of (2) corresponding to the control u∗0 and starting at time s0 from y0.

Hence, |yu∗0
s0,y0 − y0| ≤MRh, for s ∈ [s0, s1], and

|yu∗0
s0,y0(s1)− y0 + hf(s0, y0, u

∗
0)| ≤

∫ s1

s0

|f(s,y
u∗0
s0,y0(s),u∗0(s))− f(s, y0,u

∗
0(s))|ds.

On the other hand, by (H1), there exists δ(h) > 0 the modulus of continuity of f defined as:

δ(h) := max{|f(s, ξ, u)− f(s′, ξ, u)|, for ξ ∈ BR, u ∈ U and s, s′ ∈ [0, T ] with |s− s′| ≤ h}.

We get (Lf being the Lipschitz constant of f as in (H1)):

|yu∗0
s0,y0(s1)− y0 + hf(s0, y0, u

∗
0)| ≤

∫ s1

s0

hδ(h) + Lf |y
u∗0
s0,y0 − y0|ds ≤ hδ(h) + LfMRh

2.

By using assumption (22), it also holds:

|yu∗0
s0,y0(s1)− y0 + hfh(s0, y0, u

∗
0)| ≤

∫ s1

s0

hδ(h) + Lf |y
u∗0
s0,y0 − y0|ds ≤ hδ(h) + (LfMR + CR)h2.

This estimate along with (30), and by using the Lipschitz continuity of w, yield to:

w(0, y, z) ≥ w(s1,y
u∗0
s0,y0(s1), z)

∨
Ψ(s0, y0, z)

≥ w(s1, y0 + hfh(s0, y0, u
∗
0), z)

∨
Ψ(s0, y0, z)− hLw

(
δ(h) + (LfMR + CR)h

)
. (31)

Then, by the definition of the minimizer u0 we finally obtain

w(s0, y0, z) ≥ w(s1, y0 + hfh(s0, y0, u0), z)
∨

Ψ(s0, y0, z)− hεh, (32)

where εh := Lw
(
δ(h) + (LfMR + CR)h

)
. Knowing that y1 = y0 + hfh(s0, y0, u0) and that ‖w − wh‖ ≤ Eh,

we finally get the desired result:

wh(s0, y0, z) ≥
(
wh(s1, y1, z)

∨
Ψ(s0, y0, z)

)
− hεh − 2Eh.

With exactly the same arguments, for all k = 0, . . . , n− 1, we obtain:

wh(sk, yk, z) ≥
(
w(sk+1, yk+1, z)

∨
Ψ(sk, yk, z)

)
− hεh − 2Eh. (33)

Step 2. From (33), we get:

wh(0, y, z) = wh(s0, y0, z) ≥
(
wh(s1, y1, z)

∨
Ψ(s0, y0, z)

)
− hεh − 2Eh

≥
(((

wh(s2, y2, z)
∨

Ψ(s1, y1, z)
)
− hεh − 2Eh

)∨
Ψ(s0, y0, z)

)
− hεh − 2Eh.

Now, notice that (a− c) ∨ b ≥ a ∨ b− c. Therefore:

wh(0, y, z) ≥
(
wh(s2, y2, z)

∨
Ψ(s0, y0, z)

∨
Ψ(s1, y1, z)

)
− 2hεh − 4Eh.
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By induction, we finally get:

wh(0, y, z) ≥
(
wh(sn, yn, z)

∨
Ψ(s0, y0, z)

∨
· · ·
∨

Ψ(sn−1, yn−1, z)
)
− nhεh − 2nEh. (34)

Step 3. Since sn = T and w(T, yn, z) = Ψ(T, yn, z)
∨

(ϕ(yn)− z), we deduce from (34) that:

wh(0, y, z) ≥ (w(sn, yn, z)− Eh)
∨( n−1∨

k=0

Ψ(yk, z)

)
− nhεh − 2nEh

≥
( n∨
k=0

Ψ(skyk, z)

)∨
ϕ(yn, z)− Tεh − (

2T

h
+ 1)Eh.

By passing to the limit when h→ 0, and using (27) it follows that:

w(0, y, z) ≥ lim sup
h→0

( n∨
k=0

Ψ(sk, yk, z)

)∨
ϕ(yn, z). (35)

Step 4. Let yuh

(s) denote the trajectory obtained with piecewise constant controls u0, . . . , un−1 (i.e., uh(s) :=

uk for all s ∈ [sk, sk+1[) and solution of yuh

(0) = x and ẏuh

(s) = f(s,y(s),uh(s)) a.e. s ≥ 0. Consider also
yh(.) be the approximate trajectory, satisfying y(0) = x and ẏ(s) = fh(sk, yk, uk) for all s ∈ [sk, sk+1[. By
using same arguments as in Step 1, we obtain the following estimate:

max
θ∈[0,T ]

|yuh

(θ)− yh(θ)| ≤ δ(h) + (LfMR + CR)h. (36)

Step 5. Now, we claim that the following bound holds:∣∣∣∣ n−1∨
k=0

Ψ(sk, yk, z)− max
θ∈[0,T ]

Ψ(sk,y
u(θ), z)

∣∣∣∣ ≤ O(max(δ(h), h)). (37)

In order to prove this claim, let us first remark that, by using the Lipschitz regularity of t → yuh

(t), there
exists MR > 0 such that:

max
θ∈[sk,sk+1]

|yuh

(θ)− yuh

(sk)| ≤MRh. (38)

Then, by straightforward calculations, we obtain:∣∣∣∣ n−1∨
k=0

Ψ(sk, yk, z)− max
θ∈[0,T ]

Ψ(θ,yuh

(θ), z)

∣∣∣∣ =

∣∣∣∣ n−1∨
k=0

Ψ(sk, yk, z)−
n−1∨
k=0

max
θ∈[sk,sk+1]

Ψ(θ,yu(θ), z)

∣∣∣∣
≤

∣∣∣∣ n−1∨
k=0

Ψ(sk, yk, z)−
n−1∨
k=0

Ψ(sk,y
uh

(sk), z)

∣∣∣∣+

∣∣∣∣ n−1∨
k=0

Ψ(sk,y
uh

(sk), z)−
n−1∨
k=0

max
θ∈[sk,sk+1]

Ψ(θ,yuh

(θ), z)

∣∣∣∣
≤ max

k=0,..,n−1
|Ψ(sk, yk, z)−Ψ(sk,y

uh

(sk), z)|+ max
k=0,..,n−1

|Ψ(sk,y
uh

(sk), z)− max
θ∈[sk,sk+1]

Ψ(θ,yuh

(θ), z)|

≤ max
k=0,..,n−1

LΨ|yk − yuh

(sk)|+ max
k=0,..,n−1

LΨ max
θ∈[sk,sk+1]

|yuh

(sk)− yuh

(θ)|

≤ LΨδ(h) + LΨ(LfMR + CR +MR)h,

which proves (37). In the same way, we have also:∣∣∣∣
[

n∨
k=0

Ψ(sk, yk, z)
∨

(ϕ(yn)− z)

]
−
[

max
θ∈[0,T ]

Ψ(θ,yu(θ), z)
∨

(ϕ(yuh

(T ))− z)
] ∣∣∣∣ ≤ O(max(δ(h), h)). (39)
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Step 6. Combining the previous estimates (35) and (39), we obtain

w(0, y, z) ≥ lim sup
h→0

max
θ∈[0,T ]

Ψ(θ,yuh

(θ), z)
∨

(ϕ(yuh

(T ))− z). (40)

On the other hand, by definition of w the following reverse inequality holds :

w(0, y, z) ≤ lim inf
h→0

max
θ∈[0,T ]

Ψ(θ,yuh

(θ), z)
∨

(ϕ(yuh

(T ))− z). (41)

Hence the right-hand side term has a limit and

w(0, y, z) = lim
h→0

max
θ∈[0,T ]

Ψ(θ,yuh

(θ), z)
∨

(ϕ(yuh

(T ))− z). (42)

Also the discrete constructed trajectory reaches the same value:

w(0, y, z) = lim
h→0

n∨
k=0

Ψ(sk, yk, z)
∨

(ϕ(yn)− z)). (43)

This concludes to the desired result. �

In a second algorithm we consider a trajectory reconstruction procedure with a perturbation term in the def-
inition of the optimal control value. This perturbation takes the form of a penalization term on the variation of
the control with respect to the previously computed control values. To this end, for every k ≥ 1, we intro-
duce a function qk : R × Rk → R+ that represents a penalization term for the control value. For instance, if
Uk := (u0, ..., uk−1) is a vector in Rk, we may choose

qk(u,Uk) := ‖u− uk−1‖, or qk(u,Uk) := ‖u− 1

p

p∑
i=1

uk−i‖ for some p ≥ 1. (44)

Let (λh)h>0 be a family of positive constants.

Algorithm 2. Let y ∈ Rd and z ∈ R. For h ∈]0, 1], we consider an integer n ∈ N, and a partition s0 = 0 < s1 <
· · · < sn = T of [0, T ] as in Algorithm 1.

We define positions (yhk )k=0,...,n and controls (uhk)k=0,...,n−1 by recursion as follows. First we set yh0 := y.
For k = 0, we compute uh0 and yh0 as in Algorithm 1. Then, for k ≥ 1 we define Uk := (uh0 , · · · , uhk−1) and
compute:

(i) an optimal control value uhk ∈ U such that

uhk ∈ argmin
u∈U

[(
wh
(
sk, y

h
k + hk fh(sk, y

h
k , u), zh

)∨
Ψ(sk, y

h
k , z

h)

)
+ λhqk(u,Uk)

]
; (45)

(ii) a new state position yhk+1 as follows

yhk+1 := yhk + hkfh(sk, y
h
k , u

h
k).

We shall prove that this second algorithm provides also a minimizing sequence (yh,uh, zh)h>0 as soon as λh
decreases sufficiently fast as h→ 0.

In the reconstruction process (Algorithm 1), the formula (24) suggests that the control input is a value that

minimizes the function u 7−→
(
wh
(
sk, y

h
k + hk fh(sk, y

h
k , u), zh

)∨
Ψ(sk, y

h
k , z

h)

)
. Such a function may admit

several minimizers and the reconstruction procedure does not give any further information on which minimizer to
choose. Adding the term λhqk(u,Uk) can be seen as a penalization term. For example, by choosing qk(u,Uk) :=
uk−1, we force the value uk to stay as close as possible to uk−1. Here we address the convergence result of
Algorithm 2 with a penalization term qk. However, the choice of a relevant function qk is not a trivial task and
depends on the control problem under study.
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Theorem 3.15. Assume (H1), (H2) and (H3) hold true, and (22) and (27) are fulfilled. Let (yhk ) be the family
generated by Algorithm 2. Assume furthermore that the penalization term is bounded: there exists Mq > 0 such
that |qk(u,U)| ≤Mq for every u ∈ U and every U ∈ Uk, and

λh/h→ 0.

(i) The approximate trajectories (yhk )k=0,...,n are minimizing sequences in the following sense:

w(0, y, z) = lim
h→0

(
max

0≤k≤n
Ψ(sk, y

h
k , z)

)∨
ϕ(ynk , z). (46)

(ii) There exist cluster points for the sequence (yh)h>0 as h → 0, for the L∞ norm. Moreover, any such
cluster point ȳ is an admissible trajectory belonging to S[0,T ](y) and ȳ is an optimal trajectory for w(0, y, z).

Proof of Theorem 3.15. The arguments of the proof are similar to the ones used in the proof of Theorem 3.14. The
only change is in the estimate derived in Step 1, where instead of (47), we get now:

wh(sk, yk, z) ≥
(
w(sk+1, yk+1, z)

∨
Ψ(sk, yk, z)

)
− hεh − 2Eh −Mqλh. (47)

The rest of the proof remains unchanged. �
Before we end this section, we introduce a third algorithm that will be tested in the numerical section. This

algorithm uses the reachability time function as defined in section 3.3. We assume that the control problem is
autonomous (all the involved functions in the control problem do not depend in the time variable). We assume that
an approximation T h of the reachability time function is computed. The reconstruction algorithm reads as follows.

Algorithm 3.
Fix y ∈ Rd and z ∈ R. For h > 0 we consider an integer n ∈ N, a partition s0 = 0 < s1 < · · · < sn = T of

[0, T ], denote hk := sk+1 − sk and assume that

max
k

hk ≤ h.

We define the positions (yhk )k=0,...,n, and control values (uhk)k=0,...,n−1, by recursion as follows. First we set
yh0 := y. Then for k = 0, . . . , n− 1, knowing the state yhk we define

(i) an optimal control value uhk ∈ U such that

uhk ∈ argmin
u∈U

T h
(
yhk + hk fh(yhk , u), z

)
(48)

(ii) a new state position yhk+1

yhk+1 := yhk + hkfh(yhk , u
h
k). (49)

Without further assumption on the control problem, the reachability time function may be discontinuous and
we do not have any convergence proof for Algorithm 3. However, there is an obvious numerical advantage of using
Algorithm 3 rather than Algorithm 1 or 2. Indeed, while the two first algorithms require the auxiliary function wh

to be stored on a grid of dimension d+ 1, at every time sk, the third algorithm requires T h to be stored only once
on a grid of dimension d+ 1.

4 The aircraft landing abort problem : model

4.1 The flight aerodynamic
Consider the flight of an aircraft in a vertical plane over a flat earth where the thrust force, the aerodynamic force
and the weight force act on the center of gravity G of the aircraft and lie in the same plane of symmetry. Let V
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be the velocity vector of the aircraft relative to the atmosphere. In order to obtain the equations of motion, the
following system of coordinates is considered:

(i) the ground axes system Exeyeze, fixed to the surface of earth at mean sea level.
(ii) the wind axes system denoted by Oxwywzw moving with the aircraft and the xw axis coincides with the

velocity vector.
The path angle γ defines the wing axes orientation with respect to the ground horizon axes. Let G be the center

of the gravity.
We write Newton’s law as F = mdVG

dt , where where VG = V + w is the resultant velocity of the aircraft
relative to the ground axis system, and w denotes the velocity of the atmosphere relative to the ground axis system.
The different forces are the following:

• the thrust force FT is directed along the aircraft. The modulus of the thrust force is of the form FT (t, v) :=
β(t)FT (v) where v = |V| is the modulus of the velocity and β(t) ∈ [0, 1] is the power setting of the engine.
In the present study

FT (v) := A0 +A1 v +A2 v
2.

• the lift and drag forces FL, FD. The norm of these forces are supposed to satisfy the following relations:

FL(v, α)=
1

2
ρSv2c`(α), FD(v, α)=

1

2
ρSv2cd(α), (50)

where ρ is the air density on altitude, S is the wing area. The coefficients cd(α) and c`(α) depend on the
angle of attack α and the nature of the aircraft. As in [11, 12] we consider here:

cd(α) = B0 +B1α+B2α
2 (51)

c`(α) =

{
C0 + C1α α ≤ α∗,
C0 + C1α+ C2(α− α∗)2 α∗ ≤ α,

(The coefficient c` depends linearly on the coefficient α until a swiching point α∗ where the dependency
becomes polynomial.)

• the weight force FP: its modulus satisfies |FP| = mg where m is the aircraft mass and g the gravitational
constant.

The constants ρ, S, α∗, (Ai)i=0,1,2, (Bi)i=0,1,2, (Ci)i=0,1,2, m, g are given in Table 4 of Appendix A.

By using Newton’s law, the equation of motion are [11]:

ẋ = v cos γ + wx (52a)
ḣ = v sin γ + wh (52b)

v̇ =
βFT (v)

m
cos(α+ δ)− FD

m
− g sin γ − ẇx cos γ − ẇh sin γ (52c)

γ̇ =
1

v

(
βFT (v)

m
sin(α+ δ) +

FL
m
− g cos γ + ẇx sin γ − ẇh cos γ

)
(52d)

α̇ = u

where δ > 0 is also a parameter of the model, given in Table 4, and wherewx andwh are respectively the horizontal
and the vertical components of the wind velocity vector w, and

ẇx :=
∂wx
∂x

(v cos γ + wx) +
∂wx
∂h

(v sin γ + wh).

ẇh :=
∂wh
∂x

(v cos γ + wx) +
∂wh
∂h

(v sin γ + wh).
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Figure 1: Wind components wx(x) and wh(x, h) as functions of x (h = 1000 ft)

The precise model is of the form wx ≡ wx(x), wh ≡ wh(x, h), as shown in Figure 1, and is provided in ap-
pendix A.

In the more general setting, one can consider the variables u and β as controls of the dynamical system asso-
ciated with the motion equations (52). In this work different scenarios of the dynamical system are be considered,
in accordance with the role that plays the power factor β. They are described in detail in the following section.

In the sequel, the state variables are represented by a vector of R5:

y(·) = (x(·), h(·), v(·), γ(·), α(·))T .

Therefore the differential system (52) will be also denoted as follows:

ẏ(t) = f(y(t),u(t)) (53)

where the dynamics f stands for the right-hand-side of (52), and the control is u = (u, β).

The state is subject to the constraints y(t) ∈ K with

K :=
[
xmin, xmax

]
×
[
hmin, hmax

]
×
[
vmin, vmax

]
×
[
γmin, γmax

]
×
[
αmin, αmax

]
, (54)

where hmin defines the lower altitude below which the abort landing is very difficult, hmax is a reference altitude
(the cruise altitude for instance), vmax is given by the aircraft constructor, vmin > 0 is the desired minimum
velocity value, [γmin, γmax] ⊂ [−π2 ,

π
2 ]. All the numerical values for the boundary constraints are given in Table 1

in section 5.2.
The constraints on the control u is of the type umin ≤ u ≤ umax with constants umin, umax as in Table 1.

Moreover, the control β(t) ∈ [0, 1] will be also subject to different type of restrictions as made precise in each test
of section 5.3.

4.2 Optimality criterion
In the case of windshear, the Airport Traffic Control Tower has to choose between two options. The first one is to
penetrate inside the windshear area and try to make a successful landing. If the altitude is high enough, it is safer
to choose another option : the abort landing, in order avoid any unexpected instability of the aircraft. In this article
we focus on this second option.

Starting from an initial point y ∈ Rd, the optimal control problem is to maximize the lower altitude over a
given time interval, that is,

maximize
(

min
θ∈[0,T ]

h(θ)

)
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where h(θ) is the altitude at time θ corresponding to the second component of the vector yu
y (θ) solution of (53) at

time θ and such that yu
y (0) = y. For commodity, the problem is recasted into a minimization problem as follows.

Let Hr > 0 be a given reference altitude, and set

Φ(y) := Hr − h, (55)

where h is the second component of the vector y.
The state constrained control problem with a maximum running cost associated to Φ, denoted (P∞), is the

following:
inf

y∈SK
[0,T ]

max
θ∈[0,T ]

Φ(yu
y (θ)). (P∞)

5 The abort landing problem : numerical results

5.1 The finite difference scheme
It is well known, since the work of Crandall and Lions [15], that the Hamilton Jacobi equation (10) can be approx-
imated by using finite difference (FD) schemes. In our case we consider a slightly more precise scheme; namely
an Essentially Non Oscillatory (ENO) scheme of second order, see [23]. Such a scheme has been numerically
observed to be efficient. Notice that we could have also considered other discretization methods such as Semi-
Lagrangian methods (see [16, 17]). For the present application we prefer to use the ENO scheme because there is
no need of a control discretization in the definition of the numerical Hamiltonian function (seeH below).

For given non-negative mesh steps h, ∆y = (dyi)1≤i≤d, and ∆z, for a given multi-index i = (i1, . . . , id), let
yi := ymin + i∆y ≡ (yk,min + ik∆yk)1≤k≤d, zj := zmin + j∆z and tn = nh. Let us define the following grid
of Kη × [zmin, zmax]:

G :=
{

(yi, zj), i ∈ Zd, j ∈ Z, (yi, zj) ∈ Kη × [zmin, zmax]
}
.

Let us furthermore denote ψi,j := Ψ(yi, zj). In the following, wni,j will denote an approximation of the solution
w(tn, yi, zj).

Given a numerical HamiltonianH: Rd × Rd × Rd → R (see Remarks 5.1-5.2 below) the following ”explicit”
scheme is considered, as in [8]: First, it is inialized with

wNi,j = ψi,j , (yi, zj) ∈ G. (56a)

Then, for n ∈ {N − 1, N − 2, . . . , 1, 0} we compute recursively

wni,j = max

(
wn+1
i,j −∆tH(yi, D

−wn+1
i,j , D+wn+1

i,j ), ψi,j

)
, (yi, zj) ∈ G (56b)

(whereH is made precise later on).
A monotone (first order) finite difference approximation is obtained using D±wni,j = (D±k w

n
i,j)1≤k≤d with

D±k w
n
i,j := ±

wni±ek,j − w
n
i,j

∆yk
,

and where {ek}k=1,...,d is the canonical basis of Rd ((ek)k = 1 and (ek)j = 0 if j 6= k). In this paper, we use a
second order ENO scheme in order to estimate more precisely the terms D±k w

n
ik,j

, see [23]:

D±k w
n
i,j := ±

wni±ek,j − w
n
i,j

∆yk
∓ 1

2
∆yk m

(
D2
k,0w

n
i,j , D

2
k,±1w

n
i,j

)
with D2

k,εw
n
i,j := (−wni+(−1+ε)ek,j

+ 2wni+εek,j − w
n
i+(1+ε)ek,j

)/(∆yk)2, and where m(a, b) := a if ab > 0 and
|a| ≤ |b|, m(a, b) = b if ab > 0 and |a| > |b|, and m(a, b) = 0 if ab ≤ 0.
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Remark 5.1. If the numerical Hamiltonian H is Lipschitz continuous on all its arguments, consistent with H
(H(y, p, p) = H(y, p)) and monotone (i.e ∂H

∂p−k
(y, p−, p+) ≥ 0, ∂H

∂p+k
(y, p−, p+) ≤ 0) together with the following

Courant-Friedrich-Levy (CFL) condition

∆t

d∑
k=1

1

∆yk

{∣∣∣∣ ∂H∂p−k (y, p−, p+)

∣∣∣∣+

∣∣∣∣ ∂H∂p+k (y, p−, p+)

∣∣∣∣} ≤ 1, (57)

then the scheme wnij converges to the desired solution (see [8] for more details).

Remark 5.2. Since the control variable u enters linearly and only in the 5th component of the dynamics f in (53),
the Hamiltonian H(y, p) takes the following simple analytic form (here in the case of umax = −umin ≥ 0):

H(y, p) :=

4∑
i=1

−fi(y)pi + umax|p5|

where (pi)1≤i≤d are the components of p and (f1(y), . . . , f4(y)) are the first four components of f .
For this particular situation we will use the following numerical hamiltonian:

H(y, p−, p+) =

4∑
i=1

(
max(−fi(y), 0) p−i + min(−fi(y), 0) p+

i

)
+ umax max(p−5 , −p

+
5 , 0).

It satisfies all the required conditions of Remark 5.1 for a sufficiently small time step h satisfying the CFL condition
(57), which can be written here :

∆t

( ∑
1≤i≤4

|fi(y)|
∆yi

+
umax
∆y5

)
≤ 1.

5.2 Computational domain, control constraints
To solve the control problem (P∞), we will use the HJB approach as introduced in section 3. Let us mention other
recent works [10, 2] where an approximated control problem of (P∞), involving a 4-dimensional model, is also
considered by using HJB approach.

In all our computations, the boundary of the domain K is defined as in Table 1.

State variable x (ft) h (ft) v (ft s−1) γ (deg) α (deg)
min -100 450 160 -7.0 4.0
max 9900 1000 260 15.0 17.2

Control variable u (deg)
umin −3.0
umax 3.0

Table 1: Constants for the domain K and control constraints

The computational domain is sligthly extended in all directions Kη := K + ηB∞, where B∞ := [−1, 1]d is
the unit ball centered in the origin for the `∞ norm. The parameter η is fixed to a stricly positive, small value
(η = 0.05 in our computations).

5.3 Numerical experiments and analysis
In this section, we will perform different tests to investigate numerical aspects for computing an approximation
of the optimal value ϑ(0, y0) of (P∞) through the use of the auxiliary value function w. The computations are
performed as follows:

- We first consider a grid Gh on Kη (the grid’s size will be made precise for each test). Then solve numerically
the HJB equation (18) and get an approximation wh of the auxiliary value function corresponding to (P∞).
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- Let y0 ∈ K be a given initial state of the dynamical system (52). Following Proposition 3.2, an approximation
of the minimum value of (P∞) can be then defined as:

z∗h := min{z ∈ [0, 550ft] | wh(0, y0, z) ≤ 0}.

- By using Algorithm 1 or 2 on a time partition 0 = s0 ≤ s1 ≤ · · · snh
= T , we get a suboptimal trajectory for

wh(0, y0, z
∗
h) that we shall denote as yh,w.

- In the sequel, we shall also use Algorithm 3 to reconstruct a trajectory yh,T corresponding to the initial
condition (y0, z

∗
h), by using the reachability time function (here we don’t have any theoretical basis to guarantee

that yh,T is a approximation of an optimal trajectory, but numerical experiments will show that yh,T is as good
approximation as yh,w).

- Then, we will define

Jh,w :=

(
max

0≤k≤nh

Φ(yh,w(sk))

)
, (58)

Jh,T :=

(
max

0≤k≤nh

Φ(yh,T (sk))

)
. (59)

By combining Proposition 3.12 and Theorem 3.14, we know that a subsequence of (yh,w)h>0 converges to an
optimal trajectory of (P∞), when h goes to 0. Moreover,

lim
h→0

Jh,w = ϑ(0, y0).

5.3.1 Test 1: Running cost problem. Comparison of different methods for computing the optimal value

In this first test, we assume that the power thrust is maximal, i.e., β(t) ≡ 1 which implies that the corresponding
dynamical system is autonomous, controlled only by the function u(.). The initial state used is chosen as in [11]-
[12]:

y0 := (0.0, 600.0, 239.7,−2.249 deg, 7.373 deg). (60)

First, we choose a uniform grid on Kη (for the variable y) with 40 × 20 × 16 × 8 × 24 nodes. The auxiliary
variable interval (for variable z) is fixed to [0, Hr − hmin] = [0, 550 ft]. The aim is to test the convergence of the
approximation of the optimal value z∗h when the computational grid of the variable z is refined. Recall that the
dynamics of the z variable is zero. Therefore, in order to keep a reasonable number of grid points, we will rather
fix the number of grid points to 5 in the z variable, and refine the z interval by a dichotomy approach. Therefore,
the whole computation grid contains 40× 20× 16× 8× 24× 5.

Remark 5.3. The computation grid is defined in such a way the mesh size in each direction give similar CFL
ratios, i.e., when the values of µi := ∆t

∆yi
‖fi‖∞ are approximately equal for i = 1, . . . , 5.

The numerical results are shown in Table 2, using 4 successive reductions of the z interval, giving in particular
the estimated optimal z∗h in the second column. The values of Jh,w and Jh,T are reported respectively in the third
and fourth columns.

z interval z∗h Jh,w Jh,T
[0, 550] 542.30 506.16 500.03

[275, 550] 525.65 487.60 482.41
[412.5, 550] 519.72 482.22 476.14
[481.25, 550] 518.98 481.95 473.18

Table 2: (Test 1) Dichotomy on the interval of z variable.

In a next step, we fix the last interval for the auxiliary z variable (i.e., z ∈ [481.25, 550]) and refine the space
grid in the y variable. Table 3 shows the numerical results obtained when the number of grid points is increased by
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a factor of 1.55 and then by 25. By this calculation, we notice that the values of z∗h, Jh,w and Jh,T become closer
and closer as the grid size is refined.

grid z∗ Jh,w Jh,T
40× 20× 16× 8× 24× 5 518.98 481.95 473.18
60× 30× 24× 12× 36× 5 487.72 482.94 480.45
80× 40× 32× 16× 48× 5 485.30 487.77 490.13

Table 3: (Test 1) Convergence with space grid refinements for the y variable only.

In figure 2, we compare the reconstructed trajectories yh,w and yh,T . We notice that these trajectories are very
similar and their performances (Jh,w and Jh,T ) are close enough.

Figure 2: (Test 1) Optimal trajectories obtained using value function (read line) and the exit time (black line).

Several remarks should be made here. First, the reconstruction by the reachability time function is less CPU
time consumming because it requires to store the function T only on a six-dimensional grid, whereas the recon-
struction by using the auxiliary value function requires to store w on a six-dimensional grid for each time step.
Secondly, the trajectories in Figure 2 are very similar on the time interval [0, 30], and then they differ on the time
interval [30, 40]. This can be explained by the fact that the minimum running cost is reached at a time less than
t = 30. The rest of the trajectory after that time is not relevant anymore for the running cost.

It is worth to mention that once the value function wh is computed, it is possible to obtain more information
on the original control problem than simply the reconstruction of an optimal trajectory corresponding to a single
initial position. Indeed, from the function wh one can obtain an approximation of the whole feasibility set, i.e., the
set of initial conditions of the system for which there exists at least one trajectory satisfying all state constraints
until the given time horizon T . For the landing abort problem that means to know all initial flight configurations for
which it is possible to abort the landing without danger, when the local dominant wind profile is known. Indeed,
from the definition of the value function w (see also [8]), the feasibility set is given by:

Ω := {y ∈ R5, ∃z ∈ [0, 550], w(0, y, z) ≤ 0}.
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Therefore, an approximation of the feasibility set is given by:

Ωh = {y ∈ R5, ∃z ∈ [0, 550], wh(0, y, z) ≤ 0}.

As an illustration, Figure 3 shows two slices of the feasibility set. The left figure shows the feasible slice
obtained in the (v, h) plane, with fixed value x = 0 ft, α = 7.373 deg and γ = −2.249 deg; the right figure shows
the feasible slice obtained in the (v, γ) plane with fixed value x = 0 ft, α = 7.373 deg and h = 600 ft. Both slices
where extracted from the value function wh computed with the finest grid 80× 40× 32× 16× 48× 5.

Figure 3: (Test 1) Two slices of the negative level set of the value function w

Figure 4 shows optimal trajectories corresponding to different initial positions:

• y0 = (0.0, 600.0, 239.7,−2.249 deg, 7.373 deg) (in black);

• y1 = (0.0, 550.0, 250.0,−2.249 deg, 7.373 deg) (in red);

• y2 = (0.0, 600.0, 230.0,−1.500 deg, 7.373 deg) (in blue);

• y3 = (0.0, 650.0, 239.7,−3.400 deg, 7.373 deg) (in green).
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Figure 4: (Test 1) Optimal trajectories for different initial conditions

5.3.2 Test 2: Comparison of different strategies for control β for the maximum running cost problem

In test 1, we have fixed the power factor β ≡ 1 during the whole time interval [0, T ]. A more realistic model for β
is given in [11, 12] considers that at the at the initial time, when the aircraft begins its landing maneuver, the power
factor is equal to a value β0 < 1, then the pilot may increase the power until its maximum value, with a constant
variation rate, β1, and then keep it at the maximum level until the end of the maneuver.

In this section the following cases are studied and compared (the second case will correspond to the one of
[11, 12]):

• Case 1. The factor β is fixed to the maximum level : β(t) = 1. In this case the system is controlled by ω,
the angular velocity of the trust force orientation angle α :

u(t) := u(t) ∈ U ≡ [umin, umax] ⊂ R. (61)

• Case 2. This is the same setting as in Pesch at al [11, 12], where the factor β(t) is a known function of time:

β(t) :=

{
β0 + βdt if t ∈ [0, t0]
1 otherwise (62)

where β0 = 0.3825, βd = 0.2 and t0 = (1 − β0)/βd. In this case the system is again controlled by
u(·) = u(·) as in (61).

• Case 3. The factor power β(t) is considered as a control input. In this case, we have:

u(t) := (u(t), β(t)) ∈ U ≡ [umin, umax]× [βmin, βmax] ⊂ R2. (63)

(with βmin = 0 and βmax = 1, umin and umax defined in table 1).

Let us point out that in cases 1&3, the dynamical system (52) is autonomous. However, in case 2 where the
dynamics depends on a given time-dependent function β (which is not considered as a control input any more),
the control problem becomes non-autonomous. In this case, the link between the reachability time function and
the value function doesn’t hold and the reconstruction of optimal trajectories can be performed only by using
Algorithm 1 or 2.
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Figure 5: (Test 2) Optimal trajectories for different control strategies

Figure 5 shows the optimal trajectories obtained for the three different cases. From this test, it appears that the
strategy of case 2 is not the optimal choice. Optimizing the control β as in case 3 leads to a higher minimal value
of h(.).

5.3.3 Test 3: penalisation and post-processing procedures for optimal trajectory reconstruction

We compare different reconstruction procedures here using the exit time function. The aim is to reduce the shat-
tering of the control law. The computational grid used is 60× 30× 24× 12× 36× 5 and the same initial point y0

as in (60)
In Figure 6 we show the results (trajectory and control u(.)) obtained with different reconstruction procedures.

The figures on the top correspond to algorithm 1 (no penalisation term). The middle figures are given by algorithm
2 , with different penalization parameter λ (we have proceeded in the same way for the penalization of the minimal
time function as for the penalization of the value function). In particular we observe a strong enough penalization
can completely suppress the chattering, without too much impact on the optimality of the computed trajectory.

Finally, in the bottom of Figure 6 we have also tested a filtering process: we replace the optimal numerical
control found, un, by an average over a small symmetric window in time

ūn :=
1

2p+ 1

∑
j=−p,...,p

un+j .

We numerically observe a smoothing effect on the control while the trajectory is almost unchanged with respect to
the unfiltered solution (p = 0).

A Numerical data
The data corresponding to a Boeing B 727 aircraft is considered. The wind velocity components relative to the
winshear model are satisfying the following relations:
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Figure 6: (Test 3) Optimal trajectories (left) and corresponding control u (right), obtained using different recon-
struction procedures.
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wx(x) = kA(x), wh(x, h) = k
h

h∗
B(x), (64)

where A(x) and B(x) are functions depending only on the x axis given by,

A(x) =


−50 + ax3 + bx4, 0 ≤ x ≤ 500,
1
40 (x− 2300) 500 ≤ x ≤ 4100,

50− a(4600− x)3 − b(4600− x)4, 4100 ≤ x ≤ 4600,

50, 4600 ≤ x,

B(x) =


dx3 + ex4, 0 ≤ x ≤ 500,

−51 exp(−c(x− 2300)4), 500 ≤ x ≤ 4100,

d(4600− x)3 + e(4600− x)4, 4100 ≤ x ≤ 4600,

0, 4600 ≤ x.

(65)

The constants appearing in the above relations and for the forces and the wind are given in Table 4.

Table 4: Boeing 727 aircraft model and wind data.

value unit
ρ 2.203× 10−3 Ib s2ft−4

S 1.56× 103 ft2

g 32.172 ft s−2

mg 1.5× 105 Ib
δ 3.49× 10−2 rad
A0 4.456× 104 Ib
A1 −23.98 Ib s ft−1

A2 1.42× 10−2 Ib s2ft−2

B0 0.1552
B1 0.1237 rad−1

B2 2.4203 rad−2

value unit
C0 0.7125
C1 6.0877 rad−1

C2 − 9.0277 rad−2

α∗ 0.2094 rad
k ∈ [0, 1]
h∗ 1000 ft
a 6× 10−8 s−1 ft−2

b −4× 10−11 s−1 ft−3

c − ln( 25
30.6 )× 10−12 ft−4

d −8.02881× 10−8 sec−1 ft−2

e 6.28083× 10−11 sec−1 ft−3
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