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Abstract

Understanding the underpinnings of biological motor control is an important issue in movement neu-
roscience. Optimal control theory is a leading framework to rationalize this problem in computational
terms. Previously, optimal control models have been devised either in deterministic or in stochastic
settings to account for different aspects of motor control (e.g. average behavior versus trial-to-trial vari-
ability). While these approaches have yielded valuable insights about motor control, they typically fail
explain a common phenomenon known as muscle co-contraction. Co-contraction of agonist and antago-
nist muscles contributes to modulate the mechanical impedance of the neuromusculoskeletal system (e.g.
joint stiffness) and is thought to be mainly under the influence of descending signals from the brain.
Here we present a theory suggesting that one primary goal of motor planning may be to issue feedfor-
ward (open-loop) motor commands that optimally specify both force and impedance, according to the
noisy neuromusculoskeletal dynamics and to optimality criteria based on effort and variance. We show
that the proposed framework naturally accounts for several previous experimental findings regarding the
regulation of force and impedance via muscle co-contraction in the upper-limb. Optimal feedback (closed-
loop) control, preprogramming feedback gains but requiring on-line state estimation processes through
long-latency sensory feedback loops, may then complement this nominal feedforward motor command
to fully determine the limb’s mechanical impedance. The stochastic optimal open-loop control theory
may provide new insights about the general articulation of feedforward/feedback control mechanisms and

justify the occurrence of muscle co-contraction in the neural control of movement.

Author summary

This study presents a novel computational theory to explain the planning of force and impedance (e.g.
stiffness) in the neural control of movement. It assumes that one main goal of motor planning is to
elaborate feedforward motor commands that determine both the force and the impedance required for
the task at hand. These feedforward motor commands (i.e. that are defined prior to movement execution)
are designed to minimize effort and variance costs considering the uncertainty arising from sensorimotor
noise. A major outcome of this mathematical framework is the explanation of a long-known phenomenon
called muscle co-contraction (i.e. the concurrent contraction of opposing muscles). Muscle co-contraction
has been shown to occur in many situations but previous modeling works struggled to account for it.
Although effortful, co-contraction contributes to increase the robustness of motor behavior (e.g. small
variance) upstream of sophisticated optimal feedback control processes that require state estimation from
delayed sensory feedback to function. This work may have implications regarding our understanding of
the neural control of movement in computational terms. It also provides a theoretical ground to explain

how to optimally plan force and impedance within a general and versatile framework.
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Introduction

Optimal control theory is a leading framework for understanding biological motor behavior in compu-
tational terms [1-4]. Historically, this research has been carried out along two lines. On the one hand,
deterministic optimal control (DOC) theory focused on the planning stage and sought to explain average
motor behaviors in humans or animals. The minimum jerk and minimum torque change models are
well-known representatives of this line of research [5, 6], which provided researchers with simple models
accounting for the formation of average trajectories (e.g. bell-shaped velocity profiles in reaching tasks).
This laid the foundations for more advanced studies like inverse optimal control ones, where the goal
is to recover relevant optimality criteria from (averaged) experimental motion data [7,8]. On the other
hand, stochastic optimal —feedback— control (SOC or SOFC) theory was developed to account for the
variability of biological movement observed across multiple repetitions of the same task [9-11]. The
sensorimotor noise that affects the neuromusculoskeletal system, and the uncertainty it induces about
movement performance, are taken into account in this approach [12,13]. This class of model can also be
used to explain motor planning (e.g. via the specification of feedback gains prior to movement onset)
but the genuine motor commands are only revealed along the course of the movement, once the current
state of the system has been optimally estimated (e.g. hand/joint positions, velocities etc.). The SOFC
theory led to a number of valuable predictions among which the minimal intervention principle, stating

that errors are corrected on-line only when they affect the goal of the task, is a significant outcome [9].

However, these two prominent approaches have in common that they fail to simply account for a funda-
mental motor control strategy used by the central nervous system (CNS) and often referred to as muscle
co-contraction or co-activation of antagonist muscles (see [14] for a recent review). This frequent phe-
nomenon is known since more than a century and the work of Demeny [15], and has been investigated
extensively since then. There is now a strong evidence that co-contraction is voluntarily used by the CNS
in a number of tasks, especially those requiring high stability, robustness or end-point accuracy [16-18].
Co-contraction indeed contributes to modulate the mechanical impedance of the neuromusculoskeletal
system. For instance, co-contraction can drastically increase the apparent joint stiffness by a factor 4
to 7 [19]. This effect does not only result from the summation of intrinsic stiffnesses of opposing mus-
cles [20, 21] but also from nonlinear stretch reflex interaction [22,23]. While the former short-range
stiffness implements an instantaneous —feedback-free— mechanism, the latter implements a short-latency
—feedback— mechanism via fast-conducting mono- or oligo-synaptic spinal pathways (response latency at
muscle level ~20-40 ms after a mechanical perturbation). The two above-mentioned approaches (DOC and
SOFC) are not able to account for co-contraction in a principled way for fundamentally distinct reasons.
First, co-contraction contributes to modulate the effective limb’s impedance (e.g. joint stiffness), whose
actual effect can only be seen when unexpected perturbations are applied to the limb [19,24]. As there
are no such random perturbations in deterministic models, they will usually not predict co-contraction.
Indeed, there is no functional gain at co-contracting antagonist muscles in those models. Co-contraction
just appears as a waste of energy considering that such models typically aim at minimizing effort or

energy-like costs [25,26]. Therefore, whenever a deterministic model exhibits co-contraction, it is an
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artifact of muscle modeling (e.g. due to response times of muscle activation dynamics) that does not
serve any task-oriented, functional purpose. In SOFC models, the presence of sensorimotor noise is taken
into account so that co-contraction could become a relevant strategy regarding disturbance rejection and
task achievement. However, SOFC controllers typically exhibit reciprocal muscle activation patterns on
average because they also minimize (expected) effort costs (e.g. see Figure 2 in [27]), and correct errors
using sensory feedback and reciprocal activations that are less costly than co-contraction. A few studies
have nevertheless attempted to predict co-contraction from the SOFC framework. These studies had to
rely on advanced noise models explicitly reducing signal-dependent variance during co-contraction or on
advanced viscoelastic muscle models yielding co-contraction without clear task dependency or functional
purpose [28,29]. More fundamentally, an optimal feedback control scheme requires optimal state esti-
mation combining delayed sensory signals with an efferent copy of the motor command —the latter being
converted into state variables via forward internal models— [30]. The neural substrate underlying SOFC is
thought to involve long-latency transcortical pathways (with muscle response latency ~50-100ms) passing
through the primary motor cortex [31-33]. This may seem to contrast with the feedforward nature of
impedance and co-contraction control that has been stressed in several studies [16,18,34-36]. However,
the planning of optimal feedback gains may be viewed as a form of feedforward control of impedance in
SOFC. The main difference with co-contraction is that control via feedback gains critically depends on
the ability of the CNS to form accurate state estimates via sophisticated on-line cortical processes. As
this ability may be limited in some cases (e.g. unstable task or too fast motion), co-contraction may
constitute an alternative strategy to regulate mechanical impedance without high-level feedback mecha-
nisms. In this vein, several studies on deafferented monkeys (without feedback circuitry at all) suggested
that an equilibrium point/trajectory resulting from the co-contraction of agonist and antagonist mus-
cles was preprogrammed by the CNS during point-to-point movements without sight of the arm [37-40].
Similar conclusions were drawn with deafferented patients who were able to perform relatively accurate
reaching movements without on-line vision —if allowed to see their arm transiently prior to movement
execution— [41]. Furthermore, neurophysiological studies seem to agree that co-contraction commands
have a central origin with little contribution from spinal mechanisms [14,19,42]. Noticeably, during co-
contraction of opposing muscles, disynaptic reciprocal inhibition has been shown to be reduced by central
signals [43,44]. This highlights the singularity of muscle co-contraction in impedance control and departs
from the reciprocal activations predicted by standard models based on DOC or SOFC theories. For these
reasons, co-contraction may be a critical feature of descending motor commands (i.e. open-loop control in
computational terms) which may serve to generate stable motor behaviors ahead of the optimal feedback

control machinery.

In this paper, we thus propose a novel stochastic optimal control framework to determine force and
impedance —via co-contraction of agonist/antagonist muscles— at the stage of motor planning. Our
approach lies in-between DOC and SOC theories from a mathematical standpoint and we refer to it
as stochastic optimal open-loop control (SOOC) theory to stress that we consider stochastic dynamical
systems controlled by open-loop, deterministic controls [45]. This work is in the vein of seminal motor

control studies [5,46,47]. We generalize and extend these approaches to the planning of upper-limb
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movement within a versatile mathematical framework that can handle a variety of motor tasks, types
of noise, nonlinear limb dynamics and cost functions. The proposed theory primarily accounts for co-
contraction as a means to modulate the apparent mechanical impedance of the musculoskeletal system
via feedforward, descending motor commands that do not require any advanced on-line estimation of the
system state. Although we use the term open-loop —in the sense of control theory— we do not necessarily
exclude the role of automatic short-latency reflexes that contribute to the spring-like behavior of intact
muscles beyond their short-range stiffness. However, we do exclude from this open-loop terminology
all the optimal feedback control processes integrating sensory data during movement execution through
transcortical feedback loops [31]. The critical role of SOFC is rather attributed to those long-latency,
sophisticated and task-dependent motor responses that are triggered by the CNS to correct large-enough

external perturbations [32,33].

Materials and methods

Our working hypothesis is that both force and impedance are planned by the brain via descending
motor commands. To illustrate our purpose, we will focus on the control of arm posture and movement,
and compare the predictions made by our framework to existing experimental data. In this work, the
major premise is to assume open-loop controls (which makes sense at the stage of the motor planning
process) while acknowledging the stochastic nature of the neuromusculoskeletal system. We shall illustrate
that this formulation of motor planning as a SOOC problem naturally accounts for optimal muscle co-
contraction and impedance control without the need to estimate the state of the system during movement

execution.

To introduce the SOOC theory, we first revisit the influential work of [46]. Hogan considered the problem
of maintaining the forearm in an unstable upright posture in presence of uncertainty and without feedback
about the system state. The forearm was modeled as an inverted pendulum in the gravity field, actuated

by two antagonist muscles as follows:
160 = T(uy — up) — K (u1 + up)f — b0 + mgl.sin(0) + Gn (1)

where 0 is the joint angle (0° being the upright orientation of the forearm and a dot above a variable
standing for its time-derivative), I is the moment of inertia, m, I., and g are respectively the mass, length
to the center-of-mass and gravity acceleration, b is a damping parameter, and 7 is some noise (typically
Gaussian). Parameters T and K are constants —as well as the noise factor G for the moment— and u; are
the “neural” non-negative inputs to the flexor (i = 1) and extensor (i = 2) muscles. With this simplified
model, Hogan showed that the optimal open-loop controls (u;(t);=1.2) that should be used to maintain
the forearm in the unstable upright position while minimizing an expected cost based on effort and
variance led to some optimal amount of co-contraction (i.e. u; = ug > 0). The variable stiffness property
of muscles, and the fact that stiffnesses of antagonist muscles add, allowed to maintain this unstable

posture even without on-line feedback about the actual system state. This minimal example captures a
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crucial feature for our subsequent theoretical developments: the controlled system to obtain this result
involved interaction between control and state components (i.e. terms in u;0). Without gravity (g = 0)
or with linearization of gravitational torque (e.g. sin(f) = ), this type of system is called “bilinear” in
control theory and it will be the simplest class of systems for which the SOOC framework makes original
and relevant predictions regarding force and impedance planning. For linear control systems, which are
often assumed in the motor control literature for simplicity, no difference with a deterministic approach
would be observed. In the following, we build upon these ideas to model movement planning (not only
posture as in Hogan’s initial work) and extend the method to more general nonlinear dynamics (not only

bilinear dynamics as in this example).

Stochastic optimal open-loop control for bilinear systems

Consider a stochastic dynamics with bilinear drift of the form:
P
dx, = [(A+ > Niui(t))x; + Bu(t)]dt + G(t,u(t))dw; (2)
i=1

with w; being a m-dimensional standard Brownian motion. The stochastic state is denoted by x; € R"
and the deterministic control is denoted by u(t) € RP. The matrix G(¢,u(t)) € R™ ™ can account for

noise with both constant and signal-dependent variance.

In the simplest setting, our goal is to find the optimal open-loop control u(t) that minimizes a quadratic

expected cost of the form:

C(u) = E[/O ! (u(t)" Ru(t) + x{ Qx;) dt + x5 Qxy]. (3)

where R, @ and @y are positive definite and positive semi-definite matrices with appropriate dimensions

respectively.

Because u(-) is a deterministic function by hypothesis, it can be put out of the expectation. We assume
that the system has an initial state distribution that is known, xg, at the initial time (hence state
estimation from sensory feedback is at least required initially for motor planning). Time ¢y is the total
movement duration, which can be fixed a priori or left free. For such a bilinear system, x; will be a
Gaussian process because the associated stochastic differential equation is actually linear (since u(t) is
deterministic in the drift and diffusion). Therefore, the process x; can be fully determined by propagation

of its mean and covariance.

The propagation of the mean and covariance of the process x; (denoted respectively by m(t) = E[x;] and
P(t) = E[e;e;’] with e, = x; — m(t)) are given by the following ordinary differential equations (see [48]
for example):

m = (A+),Nyu;)m+ Bu

. (4)
P = [A+Y, NP+ PA+ Y, Nt + GTG.
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The latter equation shows explicitly the dependence of the covariance propagation on the control u.

Next, a simple calculation shows that the expected cost C(u) in Eq. 3 can be rewritten as follows:
tf
C(u) = / (u"Ru+ m”Qm + trace(QP)) dt + m?me + trace(Q s Py) (5)
0

Therefore, we have just shown that the initial SOOC problem reduces to an exactly-equivalent DOC
problem, the state of which is composed of the elements of the mean and covariance of the stochastic

process Xg .

It must be noted that this equivalent deterministic problem has a nonlinear dynamics but a quadratic
cost. This constraint of a quadratic cost is however not critical as any Lagrangian depending on the mean
and covariance could be added to the original cost function. For example, the following more general

type of costs could be considered as well:
ty
C(u) = E[/ (L(m(t), u(t)) +x; Qx;) dt + x} Qpxy]. (6)
0

The deterministic term L(m,u) can be used for instance to implement a minimum hand jerk on the
mean behaviour, in agreement with the deterministic control literature [5]. Note also that the term
x}'Qx; could be replaced by (x; — m(t))"Q(x; — m(t)) to introduce a penalty on the state covariance
alone in the equivalent DOC problem, in agreement with the well-known minimum variance model [47].
Terminal state constraints or path constraints could also be added on the mean and covariance of the
state process x; without any difficulty but they are not described here. Typically, this could be useful
to impose hard constraints on the mean state to reach and/or on the covariance state to set a desired
final accuracy. Such modeling choices will be illustrated in the subsequent arm movement and posture
simulations, and can easily be handled within the equivalent DOC framework. Remarkably, optimal

solutions of such DOC problems can be obtained via efficient existing numerical methods (e.g. [49]).
Stochastic optimal open-loop control for general nonlinear systems

We now consider more general stochastic dynamics of the form

dx; = f(x¢,t) dt + G(x¢,u(t), t) dw. (7)

An example of such nonlinear system would be the system of Eq. 1 (due to the gravitational torque).
Multijoint arms also exhibit complex nonlinear dynamics due to inertial, centripetal, Coriolis, and gravita-
tional torques. Nonlinearities will also arise for more advanced musculoskeletal models of the upper-limb.
Therefore, we need a method to solve SOOC problems for the general class of nonlinear stochastic systems
described in Eq. 7.
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Here we thus seek for a deterministic control u(¢) minimizing the expectation of the above quadratic cost
function (see Eq. 6) and acting on the stochastic dynamics of Eq. 7. The random process x; has still the
Markov property but it is not Gaussian anymore. However, mean and covariance are still variables of
major interest for movement control and their propagation would yield significant information about both
mean behaviour and variability. Actually we have shown in [45] that via statistical linearization techniques
the control u(t) can be approximated by the solution of a DOC problem involving the propagation of the

mean and covariance.

For instance, with Gaussian statistical linearization based on 1st order Taylor approximations, compu-
tations in [45] show that the dynamics of the mean and covariance in the corresponding DOC problem
are:

m(t) = f(m(t),1),

. (8)
P(t) = F(m(t),t)P(t) + P(t)F(m(t), )T + E[G(xs, u(t), )G (x;, u(t),t)7]

where F(m(t),t) = %(m(t),u(t)).

If G = G(u(t),t) models constant and signal-dependent noise, then the latter expectation simply equates
to G(u(t),t)G(u(t),t)T. For a more general term, such as G(x;,u(t),t), more terms may be used to

approximate the covariance propagation and the reader is referred to [50] for more information.

In summary, approximate solutions of the original SOOC problem can also be obtained from an associated
DOC problem based on the mean and covariance of a process approximating the two first moments of
the original process x;. Then, state-of-the-art DOC solvers can be used to find numerical solutions and
model other constraints if desired (e.g. set a desired final positional variance or final mean position as a
hard constraint...). The accuracy of these approximate solutions can be tested by simulating the original
stochastic equation of Eq. 7 with the obtained optimal control, and by comparing the evolution of the

mean and covariance with Monte Carlo sampling techniques.

Stochastic optimal open-loop control in the neural control of movement

The mathematical SOOC framework being formally introduced, we are now left with modeling choices
to describe the effects of co-contraction. On the one hand, one may consider an end-effector or joint
level description of the stiffness-like property of the neuromusculoskeletal system (e.g. [46] or the r- and
c-commands in [14]). On the other hand, one may consider more advanced models representing the
multiple muscles crossing each joint, the activation of which will modulate both the apparent stiffness
of the musculoskeletal system and net joint torques (e.g. [51]). This choice is related to the hierarchical
control hypothesis, as discussed in [4,14] for instance. As this choice is still elusive, we will consider both
joint and muscle levels of description. In particular, this will highlight the generality and consistency of

the proposed theory beyond specific modeling choices.

Joint level modeling: explicit description of force and impedance planning In this paragraph,

we extend Hogan’s model presented above to account for the control of movement. Consider again the
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forearm model given in Eq. 1. To simplify the derivations, we note that the state of a joint can be
modified only in two ways: it can either (1) be moved to another position via changes of net torques or
(2) be stiffened with no apparent motion via co-contraction [14]. Accordingly, the forearm dynamics can

be rewritten as
10 = 7(t) — Ksk(t)(0(t) — O(t)) — Ka/k(t) (0(t) — O(t)) — b6 + mgl, sin(d) + G, (9)

where 7(t) € R is the net joint torque and x(t) € Ry is the joint stiffness (two control variables). The
function ©(t) serves as a reference trajectory which is not present in Hogan’s original formulation but
is critical to change the limb’s working position. It has been proposed that intact muscles behave like
“nonlinear springs with modifiable zero-length”, which may be mediated by alpha motoneurons [52].
Hence, we assume that the resultant joint-level effect of this characteristics allows to set an equilibrium
joint position or trajectory. In addition to stiffness, damping also seems to be modified through co-
contraction. We thus added a term in factor of K; = v/TK, such that the damping ratio, in terms of a
second-order model, was constant (here equal to 1/2, e.g. see [53,54]).

In order to determine the reference trajectory O(t), there are several choices. For instance, one could
consider a third control variable to choose ©(t), by adding an equation such as © = u(t). This reference
trajectory might be very simple (e.g. steady state or linear). The drawback is to introduce a third control
variable, the choice of which seems rather elusive (e.g. what cost function on it). Alternatively, a better
choice may be to consider reference trajectories that are themselves solutions of the joint-level dynamics.

In this case, we assume that ©(t) also satisfies the rigid body dynamics
16 = 7(t) — bO + mygl, sin(O) (10)

with ©(0) = 0(0). Hence, if we define A(t) = 0(t) — O(t), one can derive the following system from
Egs. 9-10:

16 = 7(t) — bO + mygl.sin(O) (11)
IA = —K(t)A — Kgy/k(t)A - bA + mgl.(sin(A + ©) —sin(0)) + Gn

with A(0) = 0, ©(0) = 0(0) and A(0) = 0, ©(0) = 0. The advantage of this formulation, relying
on a reference angle © and deviations A from it, is that only two controls are needed, namely 7(t)
that specifies the net joint torque and x(t) that specifies the joint stiffness (and damping). As such,
this modeling implements a separate control of force (via reciprocal commands) and impedance (via

co-contraction commands), which is compatible with several experimental findings [18,19,55, 56].

Now assume that the goal is to minimize an expected cost of the form
ty . .
C(r,k)=E [/o (7'2 + ak? + quar (A% + 5A2))dt + qvar(A?p + 5A?) . (12)

where the cost elements in A and A penalize deviations from the reference trajectory (variance), and the
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control costs penalize effort. Weight factors a, 5 and g, can be chosen to adjust the optimal behavior
of the system. Typically, optimal solutions will yield minimal net joint torque and impedance to remain

close to the reference trajectory to some extent determined by the weight ¢4, (and 3).

In the present form, the dynamics of © and A are coupled by the gravitational term. To illustrate an

enlightening point, let us focus on horizontal movements now. The system then simplifies as follows:

16 7(t) — bO
IN = —Kk(t)A - Kg/k{t)A —bA + Gn.

(13)

This system is actually a controlled SDE with a 4-D state vector (©, 6, A, A)T Interestingly, the first two
states are deterministic (in ©) and noise only affects deviations from these reference states (in A, which
we now rewrite A; to stress that it is a random variable). Remarkably, the original SOOC problem is
completely decoupled in this case. On the one hand, we have a deterministic sub-problem with dynamics
in © and cost in 72. On the other hand, we have a stochastic sub-problem with dynamics in A, and cost in
k2 and Ay, A;. The dynamics being bilinear of the form given in Eq. 2, this SOOC problem is completely
equivalent to a deterministic optimal control problem involving only the mean and covariance of the state
(A, At) Furthermore, since the mean of (A, At) is zero given the initial conditions, propagation of the
mean can be neglected for this part. Regarding ©(t), since it is a deterministic variable, the propagation

of its covariance can be neglected.

In summary, the components ©(t), ©(t) are actually the mean of the actual state 6;,6,, and covariance
of Ay, A, is actually the covariance of the real state 6;, 0,. In other words, the net torque 7(t) controls
the mean trajectory of the stochastic process in 6, 0, whereas k(t) controls its covariance independently.
As it is Gaussian for a bilinear system, the process is fully characterized and controlled. Note that if
gravity is not neglected then the choice of the mean trajectory also affects its covariance and the two
sub-problems will be coupled. In any case, the problem can be resolved in the present SOOC framework

as explained above.

These considerations may be reminiscent of the equilibrium point theory [57]. However, they differ from
equilibrium point theory in the sense that a feedforward torque controller 7(¢) is assumed (hence our
approach requires internal models). It nevertheless fits with some aspects of the equilibrium point theory
in the sense that a “virtual” reference trajectory © is planned together with time-varying impedance
parameters (which may be tuned in practice via co-contraction of antagonist muscles). As such, 7(¢) and
k(t) might resemble the ¢- and r-commands described in [14] even though movement is not generated only
by the viscoelastic properties of the musculoskeletal systems and shifts in equilibrium points/trajectories

in our case (see also Discussion).

Muscle level modeling: implicit description of force and impedance planning Here we use
more advanced models of the musculoskeletal system. In this work, we used the muscle model proposed
by Katayama and Kawato [51] and assume that a feedforward motor command can be sent to each muscle

individually.

10
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Single-joint arm For a single-joint system like the forearm moving in the horizontal plane, Katayama

and Kawato’s model would write as follows:
I6 = 1 4+m+Gy (14)

where 71 and 75 are the muscle torques that are respectively functions of muscle activations w; and us,

defined as follows:

Ti = —CLZ'TZ', 1 =1..2

. 15

In this case, the system state would write x = (6, Q)T Parameters were taken from [51]. Here we have
I =0.0588 kg.m?, k; = 1621.6 N/m, ko = 810.8 N/m, b; = 108.1 N.s/m, by = 54.1 N.s/m, a; = 2.5 cm,
ri = (=1)" x 2.182 c¢m for i=1..2, l,,, — lp = 5.67 cm and l,,,, — [y = 0.436 cm. We also set m = 1.44 kg,
l. = 0.21 m, and the forearm length was 0.35 m.

Two-joint arm A two degrees-of-freedom (dof) version of the arm with 6 muscles was also considered
to simulate planar arm reaching movements. This is exactly the full model described in [51]. The state of
the arm is then x' = (q',q") € R* where q = (6;,602)" denotes the joint angle vector (1st component
for shoulder and 2nd component for elbow) and q = (91, 92)T denote the corresponding joint velocity

vector. The dynamics of the arm follows a rigid body equation of the form:

§=M""(q)(r(a,4,u) — C(q,q)q) (16)

where M is the inertia matrix, C is the Coriolis/centripetal term, 7 is the net joint torque vector produced
by muscles and u € RS is the muscle activation vector (restricted to be open-loop/deterministic in this

work).

The net joint torque vector was a function 7(q, g, u) depending on the moment arms (assumed constant)
and on the muscle lengths/velocities expressed as affine functions of the joint positions and velocities as
in Eq. 15. All the parameters of the complete model with 6 muscles can be found in the Tables 1, 2, and
3 in [51]. Finally, by introducing noise (w; is a 2-dimensional standard Brownian motion), we obtain the

following SDE modeling the noisy musculoskeletal dynamics of a multijoint arm:
dXt = f(Xt, u(t))dt + G(t, xt)dwt (17)
with

B q:
e u(t)) = ( M Haw) (7(a, 4, ult)) — Clar, ar)ar) ) "

and G(t,x;) is a matrix allowing to define the coupling of the system to the noise.
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Results

In this section, we consider simulations accounting for results of several experimental findings about the
planning of force and impedance as well as on the role of muscle co-contraction in posture and movement
control. Different models, types of noise, and cost functions will be used to illustrate the flexibility of
the framework in making consistent predictions about the role of co-contraction and impedance for the

open-loop control of stochastic systems.

Co-contraction planning in 1-dof motor tasks
Unstable postural task with the forearm

In the seminal study of Hogan described above [46], the maintenance of a human forearm in an upright
posture was considered. Hogan described a system controlled by a pair of antagonist muscles and showed
that co-contraction was a strategy used by participants to maintain such an unstable posture. Here, we
reconsider this task to test our framework with this simple starting example. As already mentioned, Hogan
modeled the forearm as an inverted pendulum in the gravity field driven by antagonist muscles having
the essential force-length dependence of real muscles (see Eq. 1). Here we considered two scenarios tested
in Hogan’s experiment depending on whether the forearm was loaded (m,q0q = 2.268 kg attached at the
hand) or unloaded. To efficiently resolve the problem, we showed in [45] that via statistical linearization
techniques we can get a bilinear system as in Eq. 2 (which amounts to linearize the gravitational torque,

i.e. sinf ~ 6 with a small angle hypothesis), with matrices defined as follows:

0 1 0 0 0 .
AZ(mglc _b>,B:< _T>,andNi:<_K 0),121..2. (19)
] T T T

In our simulations, noise was taken of constant variance and acting at acceleration level, G = (0,.1)".

~N o

We set T = K =1 and considered a fixed damping parameter b = 1 Nms/rad. The cost was defined as
R = diag(1,1), Q = Q; = diag(10%,10%) (see Eq. 3). We assumed that the system was at state xg = 0
at initial time ¢ = 0 with zero covariance. The goal of the task was to maintain the inverted pendulum
around this position without on-line sensory feedback for ¢ty = 5 s while minimizing a compromise between
variance (cost depending on @, Q) and effort (cost depending on R). In the equivalent DOC problem,
the final covariance Py was left free whereas the final mean state was set to zero (m; = 0). Results
of simulations are reported in Figure 1. In these graphs, one can see that an optimal level of stiffness
is achieved to stabilize the forearm in such an unstable posture. We checked that, if there was no co-
contraction, the forearm would fall in about one second due to the combined effects of noise and gravity
(remind that we prevent feedback control). Therefore, co-contraction creates a resultant stiffness that
is just enough to compensate the task instability. Note that if noise magnitude is larger, a larger co-
contraction becomes optimal (dotted line in Fig. 1A top-right panel). This change in co-contraction with

noise magnitude agrees with a study of Hasson [58]. In the loaded case, the task instability is increased
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Figure 1. Co-contraction during maintenance of an upright forearm posture. A. Position, velocity,
elbow joint stiffness and individual muscle torques are depicted for the unloaded case. For position and
velocity, the thick black line depicts the mean and standard deviations are depicted as shaded areas
(from 500 samples). Five individual trajectories are displayed for illustration purposes. Optimal joint
stiffness is depicted in solid black line and corresponding individual muscle torques are depicted below
(black for the flexor activation and gray for the extensor activation). In dotted lines, we depicted the
“divergent” stiffness level (i.e. mgl. in our case) that co-contraction must overcome for stability. In
dashed black line in the stiffness panel, we also depict the optimal stiffness if noise magnitude is
increased by a factor 5, i.e. G = (0,.5)". B. Same information in the loaded case, where I was increased
by the addition of m,eql? and gravitational torque increase by the addition of mieaqglsing. A
significant increase of stiffness, originating from a larger co-contraction of antagonist muscles, can be
noticed.

and optimal co-contraction levels become larger. Accordingly, it can be observed that, like in Hogan’s
original work [46], the activation of the flexor muscle in the loaded case is larger than the corresponding
activation of that muscle that would be necessary to maintain the forearm horizontal in the unloaded

case (dotted line in the bottom-right panel).

Reaching task with the forearm

Joint-level modeling Here we consider single-joint pointing movements performed with the forearm.
We first use the joint-level description of force and impedance derived in Eqgs. 9-13. For these simulations,
we focus more specifically on the controlled system described in Eq. 13 and on the experimental data
reported in [54,59]. Bennett’s main findings were that the elbow joint stiffness varies within point-to-point
movements (either cyclical or discrete). The forearm was found to be overall quite compliant (measured
stiffness ranging between 2 Nm/rad and 20 Nm/rad). Yet, stiffness significantly increased when the hand

approached the target and stiffness had minimal values near peak velocity. Additionally, mean joint
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stiffness was found to increase with peak velocity and to increase almost linearly with the magnitude of
net muscle torque. In Figure 2 we replicated these main observations within our framework. Figure 2A-B
shows the optimal behavior for movements executed in presence of signal-dependent noise (proportional
to net torque 7). Because the task in [59] involved cyclical forearm movements, we imposed equal initial
and final covariances. We also chose b = 0 since damping was already modulated together with stiffness
in this model such as to get a constant damping ratio as suggested in [54] (damping however seemed
harder to identify in general but it tended to fluctuate around 0.5 Nms/rad in experimental data). We
penalized the integral of the square of the controls plus a covariance term involving position and velocity
in the cost function (see Eq. 12). We considered multiplicative noise acting in torque space in these
simulations (20% of net torques, i.e. G = G(1) = 7(0, 0,070.27'(15))-'—).

In Figure 2C, we varied movement duration to test the effect of speed on joint stiffness. Results can be
compared to [54,59,60]. We found that, indeed, stiffness tends to increase almost linearly with net torque
(which also increases with speed). These values have been compared to phasic and tonic EMG data in
experimental works. However, this joint-level description of force and impedance planning does not allow
to see the origin of stiffness in terms of muscle co-contraction. Therefore, we next consider muscle models

to further investigate the co-contraction phenomenon in reaching arm movements.

Muscle-level modeling Here we consider the musculoskeletal arm model proposed in [51] (Eq. 14) to
simulate forearm flexion movements in the horizontal plane (hence with g = 0). This is a muscle-level
description of force and impedance planning. We focus on the experimental results of [61] which showed
that subjects can reach faster while preserving accuracy if asked to co-contract antagonist muscles. A
signal-dependent noise model was defined here as in [28] in order to model that co-contraction does not
lead to increased variability as it would be the case for a standard signal-dependent noise model. The

noise model was as follows:
-
G(u(t)) = ( 0 d(|u1(t) — up(t)|1? + 0.01]uy (t) + uQ(t)|1'5) ) (20)

where d is a factor to set the overall magnitude of this signal-dependent noise (here we fixed d = 4 in
simulations because it yielded good quantitative predictions of the empirical variability found in such fast

reaching movements).

The cost function of the associated deterministic problem (Eq. 5) was as follows:

C= //f u(t) "u(t) dt + trace(Q; Py) (21)
0

with Q¢ = quardiag(l, 0.1). The term Q@ ¢ simply penalizes the terminal state covariance and gy, is a free
parameter. We further set mo = (25°,0)7 and myq,, = (65°,0)7 as the initial and final mean positions of
the reaching task as in [61]. The initial covariance Py was zero and the final covariance Py was left free
but minimized because the goal of the task was to reach a target of width 5° (given that the amplitude

of the movement was 40°, the index of difficulty was 4 bits for this task). As such, this cost function
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Figure 2. Simulations of a forearm pointing movement (elbow extension of 1 rad). A. Optimal
trajectories. Angular displacement and velocity profiles (mean in thick lines and standard deviation in
shaded areas) and net torque responsible of the joint motion (third column). B. Optimal impedance.
Inertia (constant for this single-joint system), stiffness and damping are depicted. Time-varying joint
stiffness and damping, part of the open-loop optimal motor plan in our model, are responsible of
robustness of motor behavior around the mean behavior (without needing on-line feedback for that
purpose). Note an increase of stiffness at the end of the motion, to improve accuracy on target, in
agreement with experimental data. Values can be quantitatively compared to [59]. Time-average values
are represented by horizontal lines. C. Relationship between time-average net torques and time-average
stiffnesses for movements of different speeds. Peak velocity is indicated in rad/s. An approximately
linear relationship is observed as in [54]. In panels A and B, parameters were as follows: gyq, = 104,
a=1,3=001,t; =0.75, and I = 0.072. In panel C, parameters were the same except that

Guar =5 x 10% and ¢ ¢ ranged between 0.25 s and 1.0 s to generate movements of different speeds.
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t; (ms) EPstd (deg) PV (deg/s) quar Bffort (x1072) IC (%)

475 2.51 139.75 50 16.99 22.35
400 241 161.56 50 27.36 27.36
400 1.89 178.87 500 94.16 80.15
475 2.82 134.79 1 4.03 <0.1
400 3.35 146.47 1 5.60 <0.1

Table 1. Parameters corresponding to the simulated movements of Fig. 3. In all cases, initial and final
positions were 25° and 65° (amplitude of 40°). The target width was 5° such that the index of difficulty
(ID) was 4 bits. The reference end-point standard deviation can thus be 2.5°. The effort is measured as
the quadratic cost in u according to Eq. 21.

implements an effort-variance compromise as suggested in [61,62].

Figure 3 shows the results of simulated pointing movements. In Fig. 3A, we set ¢ty = 475 ms as in
Missenard’s experiment and g,q,- = 50. With these settings we reproduced quite well the spontaneous
behavior of subjects described in [61], which is representative of what occurs in a standard Fitts’ like
paradigm. For instance, peak velocities (PV) were about 140 deg/s and the index of co-contraction (IC)
was about 20% in experimental data (index of co-contraction was defined as in [56,61]). In our simulations
we obtained PV of 139.75 deg/s and IC of 22.35% (see Table 1). Yet, when asked to co-contract to an IC
of ~80%, subjects in [61] were able in practice to perform the task with greater speeds without apparent
loss of accuracy. We replicated this condition in Fig. 3B by setting ¢ty = 400 ms as in Missenard’s
experiment and g,., = 500. Because of signal-dependent noise, going faster increases noise magnitude
and endpoint variance unless co-contraction is used. With these parameters, we obtained a PV of 178.87
deg/s (compared to about 180 deg/s in [61]) and an IC of 80.15%. Even though movements were faster,
the positional standard deviation of the endpoint (EPstd) was 1.89 deg —hence smaller than half the
target’s width such that the task could be achieved successfully on successive trials—. Therefore, there
should be no more overshoots or undershoots in this condition, as was observed in [61]. Table 1 shows
that this improvement of speed at comparable accuracy is highly costly due to a clear co-contraction of
antagonists (see effort column), especially at the end of the movement (but co-contraction also appears
at its beginning). For comparison, for strategies without co-contraction (e.g. obtained by setting a small
weight, e.g. gyqr = 1), positional standard deviations of the end-point would be respectively 2.82 deg
and 3.35 deg for movements times of 475 ms and 400 ms (see Table 1). This justifies why a minimal level
of co-contraction is indeed required to perform the task accurately enough (again, with our open-loop
control assumption). The fact that a significant co-contraction appears at the beginning and at the end
of the movement agrees well with the literature [17,59]. This example confirms that a trade-off between
effort, speed, and accuracy may be prevalent in Fitts’ like tasks, i.e. when subjects are instructed to

perform the task as fast and as accurately as possible.
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Figure 3. Simulations of pointing movements following the experiment of [61]. A. Simulation with

ty = 475ms and guqr = 50. Co-contraction is necessary to achieve the requested accuracy as in real
Fitts-like reaching experiments. B. Simulation with ¢y = 400ms and g,q, = 500. It is seen that with
even more co-contraction, an acceptable accuracy can also be achieved but for faster movements. Note
the asymmetry of velocity profiles, with a longer deceleration than acceleration, which is also typical of

Fitts’ instructions (e.g. [63]).
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Co-contraction planning in 2-dof motor tasks

Here we consider 2-dof arm reaching tasks and the musculoskeletal model described in [51] and Eqs. 16-18.
This model contains 4 single-joint muscles acting around the shoulder and elbow joints and 2 double-
joint muscles. It has been shown to capture the basic stiffness properties of the human arm and has been
investigated to evaluate the equilibrium point hypothesis originally. Here we used this model to test our
SOOC framework with a quite advanced musculoskeletal model and to see whether co-contraction may

be an optimal strategy to regulate the limb’s mechanical impedance in open-loop in certain tasks.

Two-link arm reaching task in a divergent force field

Burdet and colleagues found that subjects succeeded in performing accurate pointing movements in an
unstable environment by selective muscle co-contraction [16,18]. In their experiment, participants had
to point to a target placed in front of them with a force field applying perturbations proportional to
their lateral deviation from a straight line. Therefore, it was impossible for the subjects to predict
whether the arm would be pushed to the left or to the right during movement execution. The strength
of the perturbation force (proportional to the extent of lateral deviation) and delays in sensorimotor
loops would prevent participants from using an optimal feedback control strategy that requires accurate
estimation of the system state to function (e.g. [64]). Instead, experimental data clearly showed that
the solution of the participants was to stiffen their limb, in particular via co-contraction mechanisms
and in a feedforward manner (e.g. participants kept co-contracting when the divergent force field was

unexpectedly removed) [18,65-67].

Here we used the Eqgs. 17-18 to model the arm dynamics but we added the external perturbation force
applied to the endpoint and had to consider an appropriate cost function to model the task. More

precisely, a term

Teat = M~ (a)J(q) " ( FB” ) (22)

was added to the right-hand side of Eq. 18, with J being the Jacobian matrix of the arm and F,; = Sz
being the external force (x is the Cartesian position of the hand along the horizontal axis and § =

40 Nm~! in our simulations).

The cost function was designed as
ty
ctw) = | [ Lmw)de .00 (23)
0

where L(m,u) = u'u + %(x2 + %), # and §j being the mean Cartesian accelerations of the endpoint
along the x and y axes respectively (i.e. functions of m and u, which can be easily computed from
the forward kinematic function), and ¢(xy) is a function penalizing the covariance of the final state xs
(quar is a weighting factor). Hence this cost is a trade-off between minimum effort/variance and maximum

smoothness in Cartesian space (e.g. [5,7]). In these simulations, the smoothness term was needed because
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the minimum effort solution for this musculoskeletal model led to hand trajectories that were too curved
compared to normal human behavior in the task (even without force field). For the variance term, we

penalized the final positional variance in task space by defining

d(xp) = [J(mg,r)(ay — my )][J (my 7)(q; —mg )" (24)

where my ¢ is the mean of the final position of the process and qy is a 2-D random vector composed of

final joint positions extracted from xg.

The expectation of ¢(xf) can be rewritten as a function of the final mean my and covariance P; as
®(my, Pr) = J(my )Py sJ(mgy )" where Py denotes the 2x2 covariance matrix of joint positions.

Finally, the expected cost function can be rewritten as follows:
ty
C(u) = / L(m, u) dt + gy, ®(my, Py). (25)
0

The latter cost was used in the deterministic optimal control problem that approximates the solution to
the original SOOC problem.

A simple noise model was considered in these simulations:

(26)

Gltx,) = diag(0,0)
o M~ qy)diag(oy,02) |

where the parameters o; and oy were used to set the magnitude of constant additive noise (which was

assumed to act in torque space, hence the inverse of the inertia matrix in the expression of G).

Results of simulations are reported in Figure 4 and Table 2. In these simulations, we set t; = 0.75 s
according to the data of [16]. The initial arm’s position was located at (0,0.30) in Cartesian coordinates

and the target was at (0,0.55). Noise magnitude was set to o1 = o2 = 0.025 in Eq. 26.

Overall we found that it was possible to perform this unstable reaching task without on-line feedback
of the actual system state by co-contracting pairs of opposing muscles (see Fig. 4B). This finding agrees
with [18,66]. Muscle co-contraction increased when the endpoint variance was penalized more strongly
(but at the cost of a greater effort) and when the divergent force field had a greater magnitude (see index
of co-contraction in Table 2). Co-contraction also increased when noise magnitude was increased, all
other parameters being equal (Table 2). As a rule of thumb, endpoint stiffness was found to increase with
(1) the magnitude of the divergent force field, (2) the weight of the variance cost and (3) the magnitude

of noise, in agreement with experimental observations [17,58,65].
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Figure 4. Two-link arm reaching experiment in a divergent force field. A. Endpoint trajectories (paths
and velocity) and stiffness (Cartesian stiffness components Sg,, Syyand S,y of the matrix
S=J"T(q)KJ !(q) where K = 2—; is the joint stiffness) when no penalization of the endpoint
variance is considered in the cost (gyqr = 0). Twenty sampled paths of the endpoint are depicted (light
gray traces). Red traces represent the theoretical mean trajectory from the associated DOC problem
and thick black traces represent the mean trajectory over 1000 samples. Vertical dotted lines are
displayed to visualize deviations from a straight path (+3cm). The blue circle represents the target
(radius of 2.5cm). The green ellipse represents the endpoint positional covariance. The temporal
evolution of the mean endpoint stiffness is also depicted (components Sy, Syyand Sgy). The six muscle
activations (control variables) and the muscle tensions are also reported. B. Same information with a
weight on the variance cost equal to ¢uq, = 10*. A significant increase of co-contraction of

agonist /antagonist muscles (emphasized with the same color) can be noticed and the improvement in
final accuracy is also clear (green ellipse). Note that only an open-loop motor command was employed
in these simulations (no on-line feedback control).
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Noise 0;  quar B (N/m) Effort (x1072) EP std (cm) S, (N/m)

0.025 0 0 3.73 0.79 28.02
0.025 0 40 3.98 4.46 28.29
0.025 led 0 18.18 0.52 32.20
0.025 led 40 120.77 0.89 50.69
0.025 led 40 306.28 0.42 60.66
0.05 led 40 213.13 1.13 57.03
0.025 le4 80 356.54 1.21 81.69

Table 2. Influence of model parameters on the simulated optimal movements. The model parameters
that were varied are 0, guqr and 8. Effort is the integral cost of the control variable u(t). EP std is the
final standard deviation of the endpoint along the x axis, and S,, is the mean endpoint stiffness along
the x axis. Sensitivity of the results to increasing the magnitude of the force field, increasing noise or
increasing g,qr is tested. Note that the model predicts an increase of the lateral endpoint stiffness on
average to perform the task accurately in open-loop (~2x factor in these simulations).

However, while endpoint stiffness increased along the direction of instability, we also found that it in-
creased in the direction of the movement. As such, the stiffness geometry was not really shaped according
to the direction of the destabilizing force (see Fig. 5A). We noticed this is actually a limit of the 6-muscle
model used in these simulations, which does not allow arbitrary geometries for the endpoint stiffness in a
given posture —the orientation of the depicted ellipses was actually the most horizontal that one can get
from this model for this arm posture—. To increase the stiffness along the x-axis, the algorithm thus had
to increase the endpoint stiffness as a whole and not as selectively as in the data of [16,67] (but see [68] in
static tasks). To further investigate whether the selective tuning of stiffness geometry could be predicted
by the SOOC framework, we considered a simpler Cartesian model of the task (following the derivations
of Egs. 9-13 but for a planar mass-point system). In this Cartesian model, the cost was only composed
of effort and endpoint variance terms only (no smoothness term was needed because optimal paths were
straight when minimizing effort) and we assumed for simplicity a diagonal stiffness matrix. Using this
Cartesian model, it became clear that the optimal endpoint stiffness is shaped according to the direction
of the destabilizing force with little increase of stiffness in the direction of movement when possible (see
Fig. 5B). The interest of this Cartesian model is to clearly emphasize the change in stiffness geometry in
the divergent force field. The interest of the muscle model was to show that muscle co-contraction may

underlie such an increase of endpoint stiffness in the SOOC framework.

A no intervention principle

Finally, we revisit the minimum intervention principle [9]. This well-known principle is most simply
illustrated in a pointing-to-a-line task as in [9,69,70]. For this kind of tasks, purely DOC models will
fail to explain the empirical structure of endpoint variability [70]. In contrast, SOFC models will capture
endpoint variability very well through the minimal intervention principle which states that deviations from

the planned trajectory are corrected only when they interfere with the goal of the task [9]. Alternatively
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Figure 5. Endpoint stiffness geometry at the midpoint of movement path. A. Case of the 6-muscles
model with detailed results reported in Figure 4. B. Case of a 2-D Cartesian mass-point model. In
green, the geometry of the optimal endpoint stiffness without divergent force field (NF) is represented.
In red, the same data is reported when the divergent force field is on (DF). Solid lines correspond to
B =40 and dotted lines to 8 = 80 (note that g,q- and o; were fixed in these simulations).
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Figure 6. Top view of arm trajectories for a pointing-to-a-line experiment. The targets are indicated
by the solid lines (blue and red). The green ellipse represents the 90% confidence ellipse of the endpoint
distribution. Noise was additive (o; = 0.1) in these simulations and movement time was t; = 0.75s for
the forward motion (blue) and t; = 0.55s for the leftward motion (red). The variance weight in the
cost, quar, Was set to 10* and endpoint variance was penalized in a the direction orthogonal to the
target line (via the function n'.J(qy)Pq.rJ(qs) ' n where n is the normal vector, J is the Jacobian
matrix and Py, ¢ is the joint-space positional covariance). Note that hard terminal constraints were
imposed on the mean state (mean endpoint position on the target line and zero final mean velocity).
The main orientation of the endpoint confidence ellipses is compatible with experimental observations
and shows that co-contraction may be used to increase accuracy in the task-relevant dimension.

a terminal optimal feedback controller can also reproduce this variability but it requires on-line state
estimation processes [69] (the model re-plans open-loop trajectories from each estimated initial state and
is not stochastically optimal in the sense that it does not consider variability across repeated trajectories
to determine the control action). Here we show that on-line state feedback is even not necessary at all
to reproduce that variability in task-irrelevant dimensions is larger than variability in task-relevant ones
(e.g. uncontrolled manifold, [71]) as long as the limb impedance is appropriately regulated via feedforward

processes like co-contraction.

We considered the same 6-muscle model than in the previous simulation. The simulations show that
the endpoint variance is elongated along the target line (i.e. task-irrelevant dimension), showing that
impedance regulation can lead to a phenomenon similar to a minimal intervention principle (except
that here it should rather be called a no intervention principle as there is no state feedback at all
during movement execution). Conceivably, a testable hypothesis to determine whether this consideration

makes sense would be to check the presence of such task-dependent endpoint distributions in deafferented
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patients with no vision (but with initial vision of the arm prior to the movement as in [41] and of the
redundant target). It has already been shown that, in healthy subjects, this principle still applies when

on-line vision is removed (see [70]).

Discussion

In this study, we have presented a novel optimal control framework to account for the planning of force
and impedance via co-contraction of agonist-antagonist muscles. This framework models motor planning
as the design of optimal open-loop controls for stochastic dynamics. One main implication is that such
open-loop controls will seek to optimally exploit the limb’s impedance characteristics to perform the
task accurately enough, taking into account the presence of uncertainty induced by sensorimotor noise.
Optimality is considered with respect to a trade-off between effort and variance costs but other terms
may be represented as well (e.g. smoothness) in agreement with the literature. Using several simulations,
we have illustrated the relevance and versatility of the framework to explain well-known experimental
observations involving co-contraction and impedance measurements. Below, we discuss the significance

and implication of this framework with respect to existing motor control theories.

Planning of force and impedance via muscle co-contraction

At a computational level, the SOOC framework lies in-between deterministic optimal control and optimal
feedback control theories (see [1,4,11] for reviews). These previous frameworks have been useful to
predict many aspects of sensorimotor control and learning. However, they usually do not account for
the phenomenon of agonist-antagonist muscle co-contraction in a principled manner. Yet, co-contraction
has been found in many motor tasks and is a general feature of motor control (e.g. [17,18,46,72]). In
SOOC, the crucial ingredients to obtain co-contraction in musculoskeletal systems are threefold: (1)
the consideration of open-loop controls, (2) the presence of sensorimotor noise and (3) a cost function
including at least effort and variance terms. Each ingredient has found experimental support in the
literature. The feedforward aspect of control for learned movements has been emphasized in [18, 36],
the effects of sensorimotor noise have been described in [12,13], and the relevance of effort and variance
costs in motor control has been stressed in several studies [62,73]. The class of models considered in
this study is particularly in the spirit of the minimum variance model [47] but with a couple of notable
differences. In our framework, effort and variance are separated cost elements such that an optimal
motor strategy may involve a large effort without implying a large variance (i.e. co-contraction). In the
classical minimum variance model, variance is indeed the same as effort because a signal-dependent noise
is assumed to affect a linear system. In our approach, relevant predictions regarding co-contraction and
impedance planning can be made only for nonlinear systems (e.g. bilinear systems) and irrespective of the
precise type of noise that is modeled (signal-dependent, constant noise etc.). Concretely, the controller
can reach different levels of endpoint variance by setting different levels of co-contraction whereas the

standard minimum variance model would only yield one (optimal) level of variance (at fixed movement
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time). Besides variance, effort and energy-like criteria are often minimized in optimal control models
which tends to prevent the relevance of co-contraction. In [74], it was demonstrated mathematically
that agonist-antagonist co-contraction is non-optimal with respect to the minimization of the absolute
work of muscle torques in a deterministic model. In other optimal control models with muscle modeling,
co-contraction does not occur neither in deterministic settings (Fig. 9 in [25]) nor in stochastic settings
(Fig. 2 in [27] or Fig. 3a in [28]). Researchers have nevertheless attempted to explain co-contraction
or its contribution to impedance in existing DOC or SOFC frameworks, but this was often an ad-hoc
modeling [75,76]. One difficulty is that empirical works stressed a relatively complex task-dependency of
muscle co-contraction —as assessed by EMG co-activation— [17,46,60,61,77]. For instance, co-contraction
seems to depend on noise magnitude [24,58] and to tune impedance according to the degree of instability of
the task [16,18,65,67,68]. Finding general principles to automatically predict the adequate co-contraction
or impedance required for the task at hand thus appears necessary. To this end, [28] proposed a model
based on stochastic optimal feedback control to predict limb’s impedance via muscle co-contraction. Key
to this model was the design of an extended signal-dependent noise model (see Eq. 20) that explicitly
favors co-contraction by reducing the variance of noise during co-contraction. One issue is that for simpler
noise models (e.g. simple constant noise), this model would not command muscle co-contraction. Co-
contraction and stiffness regulation was also considered in another optimal feedback control study [78§],
but the simulated limb’s stiffness was mostly due to the intrinsic stiffness of the muscles in the model
(that of [51]) without clear task dependency (signal-dependent noise was also a critical constraint). In
these SOFC models, the role of state feedback —that also accounts for a form of impedance but differently
from co-contraction— is also unclear. In [79], an optimal control model was introduced to account for the
planning of both trajectory and stiffness. However, this model as well as others not related to optimal
control (e.g. [56,80,81]), were derived along the lines of the equilibrium point theory. While co-contraction
is often discussed within equilibrium point theory [14], it is worth stressing that our approach rather
accounts for co-contraction of opposing muscles within optimal control theory. As such, an important
point of departure from equilibrium point theory is the need for internal models of the arm dynamics
(see [30]) in order to set net joint torques and derive an efficient feedforward strategy for the control force
and impedance in SOOC. The present theory indeed proposes that force and impedance may be planned
simultaneously within descending motor commands. This idea seems coherent with the several studies
that emphasized that two separate control mechanisms may exist for the control of force and impedance,
the latter being at least partly governed by agonist-antagonist co-contraction [18,19,55,56]. However,
impedance can also be regulated via feedback gains in SOFC as mentioned earlier and, therefore, the
conceptual differences between SOOC and SOFC should be discussed further.

Implications as a motor control theory

Our framework partly formulates motor planning as a stochastic optimal open-loop control problem. One
primary outcome of the planning process would then be a feedforward motor command that optimally
predetermines both the mean behaviour and the variability of the system via force and impedance con-

trol. The term “open-loop” may raise questions about the role of sensory feedback in this framework.
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Computationally, sensory feedback is only required to estimate the initial state of the motor apparatus
during movement preparation in SOOC. This contrasts with optimal feedback control that critically re-
quires an estimate the system state to create the motor command throughout movement execution [9,11].
Indeed, if the optimal gain can be elaborated at the motor planning stage in SOFC, the actual motor
command is only determined once the current state of the motor apparatus has been properly estimated
at the execution stage (e.g. hand or joint position/velocities...). An optimal feedback control scheme
is thought to involve the primary motor cortex and, therefore, to require on-line transcortical feedback
loops [31-33]. These neural pathways imply relatively long latencies with muscle responses occurring
~50-100 ms after a mechanical perturbation is applied to a limb. Because these responses are quite
sophisticated and task-dependent, relatively complex cortical processes combining sensory information
with predictions from internal models of the limb’s dynamics and the environment are likely necessary for
their formation. Besides these long-latency responses, short-latency responses are also observed <40 ms
after a mechanical perturbation. This stretch reflex only involves the spinal circuitry and has been shown
to be relatively fast, simple and stereotypical. Nevertheless, background muscle activity is also known
to modify the gain of the stretch reflex likely due to the size-recruitment principle [82]. Co-contraction
is therefore a means to increase the apparent mechanical impedance of a joint by increasing the gains of
stretch reflexes in opposing muscles (and not only by increasing the intrinsic stiffness). Nonlinear effects
occurring during co-contraction have been shown to amplify this increase of the reflex gains beyond what
would have been expected by considering each muscle alone [22]. As we do not exclude the contribution
of the stretch reflex in SOOC, ambiguity may arise here. Indeed, the stretch reflex relies on sensory
information from muscle spindles: hence it does implement a (low-level) feedback control loop. However,
we argue that the functioning of the neuromusculoskeletal system with intact reflex circuitry may be
well accounted for within the SOOC framework and the “open-loop” control assumption. Indeed, being
mainly under the influence of descending motor commands via alpha/gamma motoneurons activity, the
short-latency reflex arc plays a crucial role in the apparent spring-like properties of a muscle —which
we model- beyond its intrinsic short-range stiffness [21]. We thus consider that these low-level feed-
back loops are part of a neuromuscular actuator with variable impedance which is under a (feedforward)
control from higher-level centers. It is noteworthy that the same low-level/high-level dichotomy applies
to robotics (as does the SOOC framework actually). Moreover, experimental estimations of a limb’s
impedance during posture or movement are normally unable to rule out the impact of stretch reflexes
on measurements (which can be as short as ~20 ms for biceps brachii in humans, [83]). In summary, the
distinction between short-latency/low-level spinal loops and long-latency/high-level transcortical loops
parallels the distinction between optimal open-loop and feedback control frameworks in computational
terms. The crucial difference between SOFC and SOOC theories thus regards the involvement or not of
high-level state estimation processes in the on-line control mechanisms. One implication of the SOOC
theory is that such sophisticated high-level feedback processes occurring during movement execution may

not necessarily be critical to ensure reliable motor performance in well-learned motor behaviors.
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Conclusion

A new theoretical framework to model human movement planning has been presented. It provides
a specific emphasis on the elaboration of optimal feedforward motor commands for the control of noisy
musculoskeletal systems. Interestingly, optimal open-loop strategies spontaneously exhibit co-contraction
to generate robust motor behaviors without relying on sophisticated state feedback mechanisms during
movement execution. In this framework, the magnitude of co-contraction or joint/endpoint stiffness is
kept as small as possible because effort is penalized. Yet, depending on the task constraints (e.g. insta-
bility, accuracy demand) and uncertainty (e.g. noise magnitude), a significant feedforward co-contraction
or stiffening of the joints/hand may become the optimal strategy. This prediction was very consistent
as we found it for both joint-level and muscle-level descriptions of the musculoskeletal dynamics as well
as for various noise models. The SOOC framework may thus complement SOFC in the following sense:
once a motor plan is elaborated, locally optimal feedback control strategies may be designed to track a
desired trajectory (e.g. mean trajectory). One general advantage of planning force and impedance via co-
contraction could be to provide a nominal robustness to the system, thereby resisting small perturbations
without the need for a continuous multi-sensory integration (e.g. merging of visual and somatosensory
information at cortical levels) to optimally estimate the state of the system during movement execution.
Adequately tuning muscle co-contraction (even to small levels) might allow the system to be less sensitive
to delays, noise and task uncertainty (and might improve the reliability of state estimation as well). This
theoretical framework should be tested more extensively in the future to see whether it constitutes a vi-
able theory for the neural control of movement but it already provides an interesting conceptual trade-off
between purely deterministic approaches and purely stochastic approaches. As far as motor planning is
of concern and the elaboration of feedforward motor commands is thought to be a significant component
of the neural control of movement (see also [84]), the SOOC theory may constitute a relevant theoretical
approach. At last, we note that the very same framework could prove useful in human-inspired robotics

especially for robots with variable impedance actuators [45, 85].
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