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Abstract

In this paper, we study input-to-state stability (ISS) issues for damped wave equations with
Dirichlet boundary conditions on a bounded domain of dimension two. The damping term
is assumed to be non-linear and localized to an open subset of the domain. We handle the
disturbed case as an extension of [16], where stability results are given with a damping term
active on the full domain with no disturbances considered. We provide input-to-state types
of results.

1 Introduction

Consider the damped wave equation with localized damping, with Dirichlet boundary conditions
given by

(Pdis)


utt −∆u = −a(x)g(ut + d)− e, in R+ × Ω,

u = 0, on R+ × ∂Ω,
u(0, .) = u0 , ut(0, .) = u1,

(1)

where Ω is a C2 bounded domain of R2, d and e stand for a damping disturbance and a globally
distributed disturbance for the wave dynamics respectively. The term −a(x)g(ut+d) stands for the
(perturbed) damping term, where g : R −→ R is a C1 non-decreasing function verifying ξg(ξ) > 0
for ξ 6= 0 while a : Ω → R is a continuous non negative function which is bounded below by a
positive constant a0 on some non-empty open subset ω of Ω. Here, ω is the region of the domain
where the damping term is active, more precisely, the region where the localization function a is
bounded from below by a0. As for the initial condition (u0, u1), it belongs to the standard Hilbert
space H1

0 (Ω)× L2(Ω).
In this paper, our aim is to obtain input-to-state stability (ISS) type of results for (Pdis),

i.e., estimates of the norm of the state u which, at once, show that trajectories tend to zero in
the absence of disturbances and remain bounded by a function of the norms of the disturbances
otherwise.
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One can refer to [20] for a thorough review of ISS results and techniques for �nite dimension
systems and to the recent survey [19] for in�nite dimensional dynamical systems. In the case of
the undisturbed dynamics, i.e., (1) with (d, e) ≡ (0, 0), there is a vast literature regarding the
stability of the corresponding system with respect to the origin, which is the unique equilibrium
state of the problem. This in turn amounts to have appropriate assumptions on a and g, cf. [3] for
extensive references. We will however point out the main ones that we need in order to provide
the context of our work. To do so, we start by de�ning the energy of the system by

E(t) =
1

2

∫
Ω

(
|∇u|2(t, ·) + u2

t (t, ·)
)
dx, (2)

which de�nes a natural norm on the spaceH1
0 (Ω)×L2(Ω). Strong stabilization has been established

in the early works [8] and [10], i.e., it is proved with an argument based on the Lasalle invariance
principle that limt→+∞E(t) = 0 for every initial condition in H1

0 (Ω)× L2(Ω). However, no decay
rate of convergence for E is established since it requires in particular extra assumptions on g and
ω.

As a �rst working hypothesis, we will assume that g′(0) > 0, classifying the present work
in those that aimed at establishing results of exponential convergence for strong solutions. We
refer to [3] for the line of work where g is assumed to be super-linear in a neighborhood of the
origin (typically of polynomial type). Note that, in most of these works (except for the linear
case) the rate of exponential decay of E depends on the initial conditions. That latter fact in
turn relies on growth conditions of g at in�nity. Regarding the assumptions on ω, they have
been �rst put forward in the pioneering work [21] on semi-linear wave equations and its extension
in [13], where the multiplier geometric conditions (MGC) have been characterized for ω in order to
achieve exponential stability. For linear equations, the sharpest geometrical results are obtained
by microlocal techniques using the method of geometrical optics, cf [4] and [7].

In this paper, our objective is to obtain results for non-linear damping terms and one should
think of the nonlinearity g not only as a mean to provide more general asymptotic behavior at
in�nity than a linear one but also as modeling an uncertainty of the shape of the damping term.
Dealing with nonlinearities justi�es why microlocal techniques are not suited here and we will be
using the multiplier method as presented e.g. in [12]. Many results have been established in the
case where g′(0) = 0, for instance, decay rates for the energy are provided in [15] in the localized
case but the non-linearity is to have a linear growth for large values of its arguments. Note that the
estimates as presented in [15] are not optimal in general, as for instance in the case of a power-like
growth. For general optimal energy decay estimates and for general abstract PDEs, we refer the
reader to [1] for a general formula for explicit energy decay estimates and to [2] for an equivalent
simpli�ed energy decay estimate with optimality results in the �nite dimensional case. However,
when it comes to working under the hypothesis g′(0) > 0, few general results are available. One
can �nd a rather complete presentation of the available results in [16]. In particular, the proof
of exponential stability along strong solutions has only been given for general nonlinearities g, in
dimension two and in the special case of a non-localized damping with no disturbances requiring
only one multiplier coupled with a judicious use of Gagliardo-Nirenberg's inequality. Our results
generalize this �nding in the absence of disturbances (even though it has been mentioned in [16]
with no proof that this is the case). It has also to be noted that similar results are provided in [15]
in the localized case but the nonlinearity is lower bounded by a linear function for large values
of its arguments. That simpli�es considerably some computations. Recall also that the purpose
of [15] is instead to address issues when g′(0) = 0 and to obtain accurate decay rates for E.
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Hence a possible interest of the present paper is the fact that it handles nonlinearities g so that
g(v)/v tends to zero as |v| tends to in�nity with a linear behavior in a neighborhood of the origin.

As for ISS purposes, this paper can be seen as an extension to the in�nite dimensional context
of [14] where the nonlinearity is of the saturation type. Moreover, the present work extends to the
dimension two the works [17] and [18], where this type of issues have been addressed by building
appropriate Lyapunov functions and by providing results in dimension one. Here, we are not able
to construct Lyapunov functions and we rely instead on energy estimates based on the multiplier
method, showing how these estimates change when adding the two disturbances d and e. To develop
that strategy, we must impose additional assumptions on g′, still handling saturation functions.
As a �nal remark, we must recall that [16] contains other stability results in two directions. On
one hand, g′ can simply admit a (possibly) negative lower bound and on the other hand, the space
dimension N can be larger than 2, at the price of more restrictive assumptions on g, in particular,
by assuming quasi-linear lower bounds for its asymptotic behavior at in�nity. One can readily
extend the results of the present paper in both directions by eventually adding growth conditions
on g.

2 Statement of the problem and main result

In this section, we provide assumptions on the data needed to precisely de�ne (1). We henceforth
refer to (1) as the disturbed problem (Pdis). Next, we state and comment the main results of this
work and discuss possible extensions.

Throughout the paper, the domain Ω is a bounded open subset of R2 of class C2, the assumptions
on g are the following.

(H1): The function g : R −→ R is a C1 non-decreasing function such that

g(0) = 0, g′(0) > 0, g(x)x > 0 for x 6= 0, (3)

∃ C > 0, ∃ 1 < q < 5, ∀ |x| ≥ 1, |g(x)| ≤ C|x|q, (4)

∃ C > 0, ∃ 0 < m < 4, ∀|x| > 1, |g′(x)| ≤ C|x|m. (5)

(H2): The localization function a : Ω→ R is a continuous function such that

a ≥ 0 on Ω and ∃ a0 > 0, a ≥ a0 on ω. (6)

In order to prove the stability of solutions, we impose a multiplier geometrical condition (MGC)
on ω. It is given by the following hypothesis.

(H3): There exists an observation point x0 ∈ R2 for which ω contains the intersection of Ω
with an ε-neighborhood of

Γ(x0) = {x ∈ ∂Ω, (x− x0).ν(x) ≥ 0}, (7)

where ν is the unit outward normal vector for ∂Ω and an ε-neighborhood of Γ(x0) is de�ned by

Nε(Γ(x0)) = {x ∈ R2 : dist(x,Γ(x0)) ≤ ε}. (8)
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Regarding the disturbances d and e, we make the following assumptions.

(H4): the disturbance function d : R+ × Ω −→ R belongs to L1(R+, L
2(Ω)) and satis�es the

following:

d(t, ·) ∈ H1
0 (Ω) ∩ L2q(Ω), ∀t ∈ R+, t 7→

∫ t

0

∆d(s, ·) ds− dt(t, ·) ∈ Lip
(
R+, H

1
0 (Ω)

)
, (9)

where Lip denotes the space of Lipschitz continuous functions. We also impose that the following
quantities

C1(d) =

∫ ∞
0

∫
Ω

(|d|2 + |d|2q) dx dt, C2(d) =

∫ ∞
0

∫
Ω

|d|m (dt)
2 dx dt,

C3(d) =

∫ ∞
0

∫
Ω

(dt)
2 dx dt, C4(d) =

∫ ∞
0

(∫
Ω

|dt|2(
p
p−1) dx

)( p−1
p )

dt, (10)

are all �nite, where p is a �xed real number so that, if 0 < m ≤ 2, then p > 2
m
and if 2 < m < 4,

then p ∈ (1, m
m−2

).

Remark 2.1 The fact that d belongs to L1(R+, L
2(Ω)) means that the following quantity is �nite

C5(d) =

∫ ∞
0

||d||L2(Ω) dt, (11)

which implies that the following quantity is also �nite

C6(d) =

∫ ∞
0

∫
Ω

|d| dx dt. (12)

(H5): The disturbance function e : R+ × Ω −→ R belongs to W 1,1(R+, L
2(Ω)) and satis�es the

following

e ∈ Lip
(
R+, H

1
0 (Ω)

)
, e(0, .) ∈ L2(Ω), C̄1(e) =

∫ ∞
0

∫
Ω

e2 dx dt <∞. (13)

Remark 2.2 The fact that e belongs to W 1,1(R+, L
2(Ω)) means that the following quantities are

�nite

C̄2(e) =

∫ ∞
0

||e(t, ·)||L2(Ω) dt, C̄3(e) =

∫ ∞
0

||et(t, ·)||L2(Ω) dt. (14)

Remark 2.3 In the rest of the paper, we will use various symbols C, Cu and Cd,e which are
constants independent of the time t. However, it is important to stress that these symbols have
speci�c dependence on other parameters of the problem. More precisely, the symbol C will be used
to denote positive constants independent of initial conditions and disturbances, i.e., only depending
on the domains Ω, ω and the functions a and g. The symbol Cu denotes a generic K-function of the
norms of the initial condition (u0, u1) and similarly the symbol Cd,e denotes a generic K-function of
the several quantities Ci(d) and C̄i(e). Here K denotes the set of continuous increasing functions
γ : R+ → R+ with γ(0) = 0, cf. [19].
Moreover, in the course of intermediate computations, we will try to keep all the previous constants
as explicit as possible in terms of the norms of the initial condition and the Ci(d) and C̄i(e) in
order to keep track of the nature of generic constants. We will use the latter generic mainly in the
statements of the results.
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Before we state the main results, we de�ne the notion of a strong solution of (Pdis). To do so, we
start by giving an equivalent form of (Pdis) :

De�ne for every (t, x) ∈ R+ ×Ω, d̄(t, x) =
∫ t

0
d(s, x)ds. We translate u in (Pdis) as v = u+ d̄, it is

immediate to see that (Pdis) is equivalent to the following problem:
vtt −∆v + a(x)g(vt) = ẽ, in R+ × Ω,

v = 0, on R+ × ∂Ω,
v(0, .) = v0, vt(0, .) = ū1,

(15)

where ẽ = dt −∆d̄− e, v0 = u0 and v1 = u1 + d(0, .).
De�ne the unbounded operator

A : H = H1
0 (Ω)× L2(Ω) −→ H,

(x1, x2) 7−→ (x2,−∆x1 + ag(x2)), (16)

with domain

D(A) =
(
H2(Ω) ∩H1

0 (Ω)
)
×H1

0 (Ω).

For t ≥ 0, set

U(t) =

(
u(t, ·)
ut(t, ·)

)
, V (t) =

(
v(t, ·)
vt(t, ·)

)
, D(t) =

(
d̄(t, ·)
d(t, ·)

)
, G(t) =

(
0
ẽ

)
.

Notice that G ∈ Lip(R+, L
2(Ω)×H1

0 (Ω)). Then Problem (15) can be written as

Vt(t) = AV (t) +G(t), V (0) = V0 =

(
v0

v1

)
. (17)

A strong solution of (17) in the sens of [5] is a function V ∈ C(R+, H), absolutely continuous in
every compact of R+, satisfying V (t) ∈ D(A),∀t ∈ R+ and satisfying (17) almost everywhere in
R+. On the other hand, the hypotheses satis�ed by d imply that D(t) ∈ D(A) for every t ∈ R+.
Since U = V −D, we can now give the following de�nition for a strong solution of (Pdis).

De�nition 2.1 (Strong solution of (Pdis).)
A strong solution u of (Pdis) is a function u ∈ C1(R+, L

2(Ω))∩C(R+, H
1
0 (Ω)) such that t 7→ ut(t, ·)

is absolutely continous in every compact of R+. For all t ∈ R+, (u(t, ·), ut(t, ·)) ∈ D(A) and u(t, ·)
satis�es (Pdis) for almost all t ∈ R+.

We gather our �ndings in the following theorem regarding the disturbed system (Pdis).

Theorem 2.1 Suppose that Hypotheses (H1) to (H5) are satis�ed. Then, given (u0, u1) ∈ (H2(Ω)∩
H1

0 (Ω))×H1
0 (Ω), Problem (Pdis) has a unique strong solution u. Furthermore, the following energy

estimate holds:

E(t) ≤ (C + Cu)E(0)e−
t−1
Cu+C + Cd,e(Cu + 1), (18)

where the positive constant Cu depends only on the initial conditions and the positive constant
Cd,e depends only on the disturbances d and e.
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Remark 2.4 (Comments and extensions)

• Theorem 2.1 holds true if the Lipschitz assumptions in (9) and (13) are replaced by bounded
variation ones.

• In the case where the disturbances are both zero (d ≡ 0 and e ≡ 0), Theorem 2.1 holds without
the hypothesis on g′ given by (5) (i.e. no restriction on q in (4)) and the hypothesis given by
(4) can be then weakened to the following one

∃ C > 0, ∃ q > 1, ∀ |x| ≥ 1, |g(x)| ≤ C|x|q.

It is clear that if g satis�es the last part of the condition above for 0 ≤ q ≤ 1, it would still
satisfy it for any q > 1.

• The geometrical condition MGC imposed in (H3) can be readily reduced to the weaker and
more general MGC introduced in [13] and called piecewise MGC in [3].

Remark 2.5 Note that (18) is an ISS-type estimate but it fails to be a strict one (let say in the
sense of De�nition 1.6 in [19]) for two facts. First of all, the estimated quantity E is the norm of
a trajectory in the space H1

0 (Ω)× L2(Ω) while the constant Cu depends on the initial condition by
its norm in the smaller space (H2(Ω) ∩H1

0 (Ω))×H1
0 (Ω). This di�erence seems unavoidable since

in the undisturbed case exponential decay can be proved only for strong solutions as soon as the
nonlinearity g is not assumed to be bounded below at in�nity by a linear function. As a matter of
fact, it would be interesting to prove that strong stability is the best convergence result one could get
for weak solutions, let say with damping functions g of saturation type functions and in dimension
at least two.
The second di�erence lies in the second term in (18), namely it is not just a K-function of the
norms of the disturbances. We can get such a result if we have an extra assumption on g, typically
g of growth at most linear at in�nity (i.e., q = 1) with bounded derivative (i.e., m = 0). In
particular, this covers the case of regular saturation functions (increasing bounded functions g with
bounded derivatives).

We give now the proof of the well-posedness part of Theorem (2.1).

Proof of the well-posedness: The argument is standard since −A, where A is de�ned in (16), is
a maximal monotone operator on H1

0 (Ω)×L2(Ω) (cf. for instance [11] for a proof). We can apply
Theorem 3.4 combined with Propositions 3.2 and Propositions 3.3 in [5] to (17), which immediately
proves the results of the well- posedness part.

�

Remark 2.6 In [16], the domain of the operator has been chosen as

{(u, v) ∈ H1
0 (Ω)×H1

0 (Ω) : −∆u+ g(v) ∈ L2(Ω)}.

However, in dimension two, taking the domain of A in the case where d = e = 0 as Z = {(u, v) ∈
H1

0 (Ω)×H1
0 (Ω) : −∆u+ a(x)g(v) ∈ L2(Ω)} or as (H2(Ω)∩H1

0 (Ω))×H1
0 (Ω) is equivalent. Indeed,

using the hypothesis given by (4), we have that |g(v)| ≤ C|v|q for |v| < 1, which means when
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combining it with the fact that g(0) = 0 that |g(v)| ≤ C|v|q + C|v| for all v. From Gagliardo-
Nirenberg theorem (see in Appendix) we have for v ∈ H1

0 (Ω) that

‖v‖2q
L2q(Ω) ≤ C‖v‖2q−2

H1
0 (Ω)
‖v‖2

L2(Ω),

which means that

‖g(v)‖2
L2(Ω) =

∫
Ω

|g(v)|2dx ≤ C

∫
Ω

(|v|q + |v|)2 dx ≤ C‖v‖2q
L2q(Ω) + C‖v‖2

L2(Ω)

≤ ‖v‖2q−2

H1
0 (Ω)
‖v‖2

L2(Ω) + C‖v‖2
L2(Ω) < +∞ (since v ∈ H1

0 (Ω)),

i.e., g(v) ∈ L2(Ω). Then, by using Lemma 3.2 (with (d, e) ≡ (0, 0)), we have that −∆u+ ag(v) ∈
L2(Ω), which means that ∆u ∈ L2(Ω). On the other hand, ‖∆u‖L2(Ω) is an equivalent norm to the
norm of H2(Ω) ∩H1

0 (Ω) and Ω is of class C2 (the proof is a direct result of Theorem 4 of Section
6.3 in [9]). We can �nally conclude that Z is nothing else but (H2(Ω) ∩H1

0 (Ω))×H1
0 (Ω).

3 Proof of the energy estimate (18)

To prove the energy estimate given by (18), we are going to use the multiplier method combined
with a Gronwall lemma and other technical lemmas given in this section. We will be referring
to [15] and [16] in several computations since our problem is a generalization of their strategy to
the case where the disturbances (d, e) are present.

We start with the following lemma stating that the energy E is bounded along trajectories of
(Pdis).

Lemma 3.1 Under the hypotheses of Theorem (2.1), the energy of a strong solution of Problem
(Pdis), satis�es

E ′(t) = −
∫

Ω

autg(ut + d) dx−
∫

Ω

ute dx, ∀t ≥ 0. (19)

Furthermore, there exist positive constants C and Cd,e such that

E(T ) ≤ CE(S) + Cd,e, ∀ 0 ≤ S ≤ T. (20)

Proof of Lemma 3.1: Equation (19) follows after multiplying the �rst equation of (1) by ut
and performing standard computations. Notice that we do not have the dissipation of E since the
sign of E ′ is not necessarily constant. To achieve (20), we �rst write

−
∫

Ω

autg(ut + d) dx = −
∫
|ut|≤|d|

autg(ut + d) dx−
∫
|ut|>|d|

autg(ut + d) dx. (21)

On one hand, from (3) and the fact that (ut +d) and ut have the same sign if |ut| > |d|, we deduce
that

−
∫
|ut|>|d|

autg(ut + d) dx ≤ 0. (22)
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On the other hand, since g is non-decreasing, has linear growth in a neighborhood of zero by (3),
and satis�es (4), it follows that

−
∫
|ut|≤|d|

autg(ut + d) dx ≤ C

∫
|ut|≤|d|

|d||g(|2d|)| dx ≤ C

∫
Ω

|d||g(|2d|)| dx

≤ C

∫
|d|<1

|d||g(2d)|dx+ C

∫
|d|≥1

|d||g(2d)|dx

≤ C

∫
|d|<1

|d|2dx+ C

∫
|d|≥1

|d|q+1dx

≤ C

∫
Ω

(|d|2 + |d|2q) dx. (23)

Combining (21), (22), (23) and (19), we obtain that

E ′ ≤ C

∫
Ω

(|d|2 + |d|2q) dx−
∫

Ω

ute dx dt. (24)

Using Cauchy-Schwarz inequality,

E ′ ≤ C

∫
Ω

(|d|2 + |d|2q) dx+

(∫
Ω

|e|2 dx dt
) 1

2
(∫

Ω

|ut|2 dx
) 1

2

≤ C

∫
Ω

(|d|2 + |d|2q) dx+ C‖e‖L2(Ω)

√
E,

then integrating between two arbitrary non negative times S ≤ T , we get

E(T ) ≤ E(S) + CC1(d) + C

∫ T

S
‖e‖L2(Ω)

√
Edt,

which allows us to apply Theorem A.2 and conclude that

E(T ) ≤ CE(S) + CC1(d) + CC̄2(e)2 = CE(S) + Cd,e.

Hence, the proof of Lemma 3.1 is completed.

�

Remark 3.1 In the absence of disturbances, in other words when d = e = 0 we have that:

E ′(t) = −
∫

Ω

autg(ut) dx, ∀t ≥ 0, (25)

and thus the energy E is non increasing by using (3). That latter fact simpli�es the proof of
exponential decrease in this case.

We provide now an extension of Lemma 2 in [16] to the context of (Pdis).

Lemma 3.2 Under the hypotheses of Theorem 2.1, for every solution of Problem (Pdis) with initial
conditions (u0, u1) ∈ (H2(Ω)∩H1

0 (Ω))×H1
0 (Ω), there exist explicit positive constants Cu and Cd,e

such that

∀t ≥ 0, ‖ −∆u(t, ·) + a(·)g(ut(t, ·) + d(t, ·)) + e(t, ·)‖2
L2(Ω) + ‖ut(t, ·)‖2

H1
0 (Ω) ≤ Cu + Cd,e. (26)
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Proof of Lemma 3.2: We set w := ut, where u is the strong solution of (Pdis). We know
that w(t) ∈ H1

0 (Ω) for every t ≥ 0. Moreover, it is standard to show that w(t) satis�es in the
distributional sense the following problem:

wtt −∆w + ag′(w + d)(wt + dt) + et = 0, in Ω× R+,
w = 0, on ∂Ω× R+,

w(0) = u1, wt(0) = ∆u0 − g(u1 + d(0))− e(0).
(27)

Set Ew(t) to be the energy of w for all t ≥ 0. It is given by

Ew(t) =
1

2

∫
Ω

(w2
t (t, x) + |∇w(t, x)|2) dx.

Using wt as a test function in (27), then performing standard computations, we derive

Ew(t)− Ew(0) =−
∫ t

0

∫
Ω

(ag′(w + d)(dt + wt)wt + etwt) dxdτ. (28)

Let I :=
∫ t

0

∫
Ω
a(.)g′(w + d)(dt + wt)wt dxdτ . We split the domain Ω in I according to whether

|dt| ≤ |wt| or not. Clearly the part corresponding to |dt| ≤ |wt| is non negative since g′ ≥ 0, a ≥ 0
and (dt + wt) and wt have the same sign. From (5), one has the immediate estimate

g′(a+ b) ≤ C(1 + |a+ b|m) ≤ C(1 + |a|m + |b|m), ∀a, b ∈ R.

Using the above, we can rewrite (28) as

Ew(t)− Ew(0) ≤
∫ t

0

∫
|dt|>|wt|

ag′(w + d)(dt + wt)wt dxdτ +

∫ t

0

∫
Ω

|et||wt| dxdτ

≤ C

∫ t

0

∫
Ω

g′(w + d)d2
t dxdτ + C

∫ t

0

||et||L2(Ω)

√
Ewdτ

≤ C

∫ t

0

∫
Ω

(1 + |w|m + |d|m)d2
t dxdτ + C

∫ t

0

‖et‖L2(Ω)

√
Ewdτ. (29)

Using Hölder's inequality,∫ t

0

∫
Ω

|w|md2
t dxdτ ≤

∫ t

0

(∫
Ω

|w|pm dx
) 1

p
(∫

Ω

|dt|2p
′
dx

) 1
p′

dτ, (30)

with p de�ned in (10) and p′ > 1 is its conjugate exponent given by 1
p

+ 1
p′

= 1. Thanks to the
assumptions on p, one can use Gagliardo-Nirenberg's inequality for w to get(∫

Ω

|w(t, x)|pm dx
) 1

p

≤ CEw(t)
mθ
2 E(t)

(1−θ)m
2 , t ≥ 0, (31)

where θ = 1− 2
mp

. Combining (31), (30) and (29), it follows that

Ew(t)− Ew(0) ≤ C

∫ t

0

E
mθ
2
w E

(1−θ)m
2

∫
Ω

(
|dt|2p

′
dx
) 1
p′
dτ

+

∫ t

0

∫
Ω

(1 + |d|m)d2
t dxdτ + C

∫ t

0

||et||L2(Ω)

√
Ewdτ. (32)

9



Note that mθ
2
< 1. Setting h1(t) =

∫
Ω

(
|dt|2p

′
dx
) 1
p′ , h2(t) = ||et||L2(Ω) and using (20), (32) becomes

Ew(t) ≤ Ew(0) + C2(d) + C3(d) + (Cu + Cd,e)

∫ t

0

E
mθ
2
w h1(s)ds+ C

∫ t

0

h2(s)
√
Ewds. (33)

We know that ∫ ∞
0

h1(t) dt = C4(d) <∞,
∫ ∞

0

h2(t) dt = C̄3(e) <∞. (34)

We can now apply Theorem A.2 on (33) with

S = 0, T = t, α1 =
mθ

2
, α1 =

1

2
, F (·) = Ew(·), C3 = C2(d) + C3(d), C1 = Cu + Cd,e, C2 = C.

We obtain the following bound for Ew(·):

Ew(t) ≤ max
(

2(Ew(0) + C2(d) + C3(d)), (2C̃)
1

1−α

)
, (35)

where C̃ := C1‖h1‖1 + C2‖h2‖1 and α := max(α1, α2) if 2C̃ ≥ 1 or α := min(α1, α2) if 2C̃ < 1.

It is clear that C̃ = (Cu + Cd,e)C4(d) + CC̄3(e) ≤ Cu + Cd,e. One then rewrites (35) as

Ew(t) ≤ 2(Ew(0) + C2(d) + C3(d)) + (Cu + Cd,e)
1

1−α . (36)

Note that for t ≥ 0 one obviously has that

Ew(t) =
1

2

∫
Ω

(w2
t (t, x) + |∇w(t, x)|2) dx

=
1

2

(
||utt(t, ·)||2L2(Ω) + ‖ut(t, ·)‖2

H1
0 (Ω)

)
= ‖ −∆u(t, ·) + a(·)g(ut(t, ·) + d(t, ·)) + e(t, ·)‖2

L2(Ω) + ‖ut(t, ·)‖2
H1

0 (Ω).

The conclusion of the lemma follows since, by taking into account (4), it is clear that Ew(0) ≤
Cu + Cd,e.

�

We next provide the following important estimate based on Gagliardo-Nirenberg theorem:

Lemma 3.3 For all q > 2, a strong solution u of (Pdis) satis�es

‖ut(t, ·)‖qLq(Ω) ≤ (Cu + Cd,e)E(t), t ≥ 0. (37)

Proof of Lemma 3.3: We derive immediately from (26) that ‖ut‖H1
0 (Ω) ≤ Cu + Cd,e. Then,

using Gagliardo-Nirenberg's theorem, it follows that, for every t ≥ 0,

‖ut(t, ·)‖qLq(Ω) ≤ C‖ut(t, ·)‖q−2

H1
0 (Ω)
‖ut(t, ·)‖2

L2(Ω) ≤ (Cu + Cd,e)E(t). (38)

�
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We have all the tools now to start the proof of the second part of Theorem 2.1. The stability result
will be achieved as a direct consequence of the following proposition:

Proposition 3.1 Suppose that the hypotheses of Theorem (2.1) are satis�ed, then the energy E
of the strong solution u of (Pdis) with (u0, u1) ∈ (H2(Ω)∩H1

0 (Ω))×H1
0 (Ω)), satis�es the following

estimate: ∫ T

S

E(t) dt ≤ (Cu + C)E(S) + (1 + Cu)Cd,e, (39)

where the positive constant Cu depends only on the initial condition, the positive constant Cd,e
depends only on the disturbances d and e respectively and C is a positive real constant.

3.0.1 Proof of Proposition 3.1

We now embark on an argument for Proposition 3.1. It is based on the use of several multipliers
that we will apply to the partial di�erential equation of (1). For that purpose, we need to de�ne
several functions associated with Ω.

Let (u0, u1) ∈ (H2(Ω) ∩ H1
0 (Ω)) × H1

0 (Ω), S ≤ T two non negative times and x0 ∈ R2 an ob-
servation point. De�ne ε0, ε1 and ε2 three positive real constants such that ε0 < ε1 < ε2 < ε where
ε is the same de�ned in 8. Using εi, we de�ne Qi for i = 0, 1, 2 as Qi = Nεi [Γ(x0)].

Since (Ω \Q1) ∩Q0 = ∅, we are allowed to de�ne a function ψ ∈ C∞0 (R2) such that
0 ≤ ψ ≤ 1,

ψ = 1 on Ω̄ \Q1,

ψ = 0 on Q0.

We also de�ne the C1 vector �eld h on Ω by

h(x) := ψ(x)(x− x0). (40)

When the context is clear, we will omit the arguments of h.

We use the multiplier M(u) := h∇u+ u
2
to deduce the following �rst estimate:

Lemma 3.4 Under the hypotheses of Proposition 3.1, we have the following inequality:∫ T

S

E dt ≤

∣∣∣∣∣
[∫

Ω

utM(u) dx

]T
S

∣∣∣∣∣︸ ︷︷ ︸
T1

+C

∫ T

S

∫
Ω∩Q1

|∇u|2 dx dt︸ ︷︷ ︸
T2

+

∣∣∣∣∫ T

S

∫
Ω

ag(ut + d)M(u) dx dt

∣∣∣∣︸ ︷︷ ︸
T3

+

∣∣∣∣∫ T

S

∫
Ω

eM(u) dx dt

∣∣∣∣︸ ︷︷ ︸
T4

+C

∫ T

S

∫
ω

u2
t dx dt︸ ︷︷ ︸

T5

, (41)

where h is de�ned in (40) and M(u) is the multiplier given by h.∇u+ u
2
.

Proof of Lemma 3.4. The proof is based on multiplying (Pdis) by the multiplier M(u) and
integrating on [S, T ]×Ω. Then, we follow the steps that led to the proof of equation (3.15) in [15]
except that we take σ = 0 and φ(t) = t in the beginning and we replace ρ(x, ut) by a(x)g(ut+d)+e.

11



�

Remark 3.2 From now on, whenever we refer to a proof in [15], we refer to the steps of the proof
with the change of σ = 0 and φ(t) = t as well as replacing ρ(x, ut) by a(x)g(ut + d) + e.

The goal now is to estimate the terms T1 to T5.

Lemma 3.5 Under the hypotheses of Proposition 3.1, there exists a positive constant C such that

T1 ≤ CE(S) + Cd,e. (42)

Proof of Lemma 3.5: Exactly as the proof of equation (5.14) in [15] except that we use (20) in
the very last step since we do not have the non-increasing of the energy here. We obtain (42).

�

The estimation of T2 requires more work and it is given in the following lemma:

Lemma 3.6 Under the hypotheses of Proposition 3.1, T2 is estimated by

T2 ≤ Cη0

∫ T

S

E dt+
C

η0

∫ T

S

∫
ω

u2
t dx dt+

1

η0

(C + Cu + Cd,e)E(S) +
1

η5
0

(Cd,eCu + Cd,e) , (43)

where 0 < η0 < 1 is an arbitrary real positive number to be chosen later.

Proof of Lemma 3.6: The argument requires a new multiplier, namely ξu, where the function
ξ ∈ C∞0 (R2) is de�ned by 

0 ≤ ξ ≤ 1,

ξ = 1 on Q1,

ξ = 0 on R2 \Q2.

(44)

Such a function ξ exists since R2 \Q2 ∩ Q1 = ∅. Using the multiplier ξu and following the steps
in the proof of Lemma 9 in [15], yields the following identity:∫ T

S

∫
Ω
ξ|∇u|2 dx dt =

∫ T

S

∫
Ω
ξ|ut|2 dx dt+

1

2

∫ T

S

∫
Ω

∆ξu2 dx dt−
[∫

Ω
ξuut dx

]T
S

−
∫ T

S

∫
Ω
ξu [a(x)g(ut + d) + e] dx dt. (45)

Combining the fact that ∆ξ is bounded and the de�nition of ξ, we derive from (45) that

T2 ≤
∫ T

S

∫
Ω∩Q2

|ut|2 dx dt+

∣∣∣∣∣
[∫

Ω∩Q2

uut dx

]T
S

∣∣∣∣∣︸ ︷︷ ︸
S1

+C

∫ T

S

∫
Ω∩Q2

u2 dx dt︸ ︷︷ ︸
S2

+

∫ T

S

∫
Ω

|uag(ut + d)| dx dt︸ ︷︷ ︸
S3

+

∫ T

S

∫
Ω

|ue| dx dt︸ ︷︷ ︸
S4

. (46)
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First, note that the �rst term of (46) is upper bounded by
∫ T
S

∫
ω
|ut|2 dx dt since Ω∩Q2 ⊂ ω. Left

to estimate the other terms in the right-hand side of (46). We start by treating S1. We easily get
the following estimate by using Young and Poincaré inequalities:∫

Ω∩Q2

|uut| dx ≤
1

2

∫
Ω∩Q2

|u|2 dx+
1

2

∫
Ω∩Q2

|ut|2 dx ≤ CE. (47)

Using (20) with (47) we obtain the estimation of S1 given by

S1 ≤ CE(S) + Cd,e. (48)

To estimate S2, we introduce the last multiplier in what follows:

Since (Ω \ ω) ∩ (Q2 ∩ Ω) = ∅, there exists a function β ∈ C∞0 (R2) such that
0 ≤ β ≤ 1,

β = 1 on Q2 ∩ Ω,

β = 0 on Ω \ ω.
(49)

For every t ≥ 0, let z be the solution of the following elliptic problem:{
∆z = βu in Ω,
z = 0 on ∂Ω.

(50)

One can prove the following lemma:

Lemma 3.7 Under the hypotheses of Proposition 3.1 with z as de�ned in (50), it holds that

||z||L2(Ω) ≤ C||u||L2(Ω), ||zt||2L2(Ω) ≤ C

∫
Ω

β|ut|2 dx, ‖∇z‖L2(Ω) ≤ C||∇u||L2(Ω), (51)

∀S ≤ T ∈ R+,

∫ T

S

∫
Ω

βu2 dx dt =

[∫
Ω

zut dx

]T
S

+

∫ T

S

∫
Ω

(−ztut + z [ag(ut + d) + e]) dx dt.

(52)

Proof of Lemma 3.7: Equation 51 gathers standard elliptic estimates from the de�nition of z
as a solution of (50) while (52) is obtained by using z as a multiplier for (Pdis). Steps of the proof
are similar to the ones that led to equations (5.22), (5.25) and (5.26) in [15].

�

Since the non negative β is equal to 1 on Q2 and 0 on R2 \ ω, it follows from (52) that

S2 ≤
[∫

Ω

zut dx

]T
S︸ ︷︷ ︸

U1

−
∫ T

S

∫
Ω

ztut dx dt︸ ︷︷ ︸
U2

+

∫ T

S

∫
Ω

z(ag(ut + d) + e) dx dt︸ ︷︷ ︸
U3

. (53)

We estimate U1, U2 and U3. We start by handling U1. One has from Cauchy-Schwarz inequality,
then (51) and Poincaré inequality that∣∣∣∣∫

Ω

zut dx

∣∣∣∣ ≤ ||z||L2(Ω)||ut||L2(Ω) ≤ C||∇u||L2(Ω)||ut||L2(Ω) ≤ CE(t). (54)
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Using (54) and the fact that E is non-increasing, it is then immediate to derive that

|U1| =
∣∣∣∣(∫

Ω

zut dx

)
(T )−

(∫
Ω

zut dx

)
(S)

∣∣∣∣ ≤ C(E(T ) + E(S)). (55)

Finally, using (20) in (55), we obtain that

U1 ≤ CE(S) + Cd,e. (56)

As for U2, the use of Young inequality with an arbitrary real number 0 < η0 < 1 yields

|U2| ≤
∫ T

S

∫
Ω

1

2η0

|zt|2 dx dt+

∫ T

S

∫
Ω

η0

2
|ut|2 dx dt.

Then, we use (51) and the fact that 0 ≤ β ≤ 1 to conclude the following estimate:

U2 ≤
C

η0

∫ T

S

∫
ω

u2
t dx dt+ Cη0

∫ T

S

E dx dt, (57)

where η0 is a positive real number to be chosen later.
Left to estimate U3. We can rewrite it as the following:

U3 =

∫ T

S

∫
|ut+d|≤1

a(x)zg(ut + d)dxdt︸ ︷︷ ︸
V1

+

∫ T

S

∫
|ut+d|>1

a(x)zg(ut + d)dxdt︸ ︷︷ ︸
V2

+

∫ T

S

∫
Ω

a(x)zedxdt︸ ︷︷ ︸
V3

.

(58)

We estimate the three terms V1, V2 and V3. We start by estimating V1. We have using Young
inequality that

V1 ≤ Cη0

∫ T

S

E dt+
1

η0

∫ T

S

∫
|ut+d|≤1

|ag(ut + d)|2 dx dt. (59)

The fact that g(0) = 0 implies the existence of a constant C > 0 such that |g(x)| ≤ C|x| for all
|x| ≤ 1. Combining it with the fact that g(x)x ≥ 0, ∀ x ∈ R, it follows that∫ T

S

∫
|ut+d|≤1

|ag(ut + d)|2 dx dt ≤
∫ T

S

∫
|ut+d|≤1

a(.)(ut + d)g(ut + d) dx dt

≤
∫ T

S

∫
Ω

a(.)(ut + d)g(ut + d) dx dt. (60)

Using (19) and Young inequality with 0 < η1 < 1,∫ T

S

∫
Ω

a(.)(ut + d)g(ut + d) dx dt =

∫ T

S

∫
Ω

autg(ut + d) dx dt+

∫ T

S

∫
Ω

adg(ut + d) dx dt

≤
∫ T

S

∫
Ω

autg(ut + d) dx dt+

∫ T

S

∫
Ω

ute dx dt−
∫ T

S

∫
Ω

ute dx dt+ C

∫ T

S

∫
Ω

|d||g(ut + d)| dx dt

≤
∫ T

S

(−E ′)dt+

∫ T

S

∫
Ω

|ut||e| dx dt+ C

∫ T

S

∫
Ω

|d||g(ut + d)| dx dt

≤ E(S) + Cη1

∫ T

S

E dt+
C

η1

∫ T

S

∫
Ω

|e|2 dx dt+ C

∫ T

S

∫
Ω

|d||g(ut + d)| dx dt

≤ E(S) + Cη1

∫ T

S

E dt+
C

η1

C̄1(e) + C

∫ T

S

∫
Ω

|d||g(ut + d)| dx dt. (61)
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Left to estimate
∫ T
S

∫
Ω
|d||g(ut + d)| dx dt, we proceed as the following:∫ T

S

∫
Ω

|d||g(ut + d)| dx dt =

∫ T

S

∫
|ut+d|≤1

|d||g(ut + d)| dx dt+

∫ T

S

∫
|ut+d|>1

|d||g(ut + d)| dx dt

≤ C

∫ T

S

∫
|ut+d|≤1

|d| dx dt+
C

η′1

∫ T

S

∫
|ut+d|>1

|d|2 dx dt+ η′1

∫ T

S

∫
|ut+d|>1

|g(ut + d)|2 dx dt

≤ CC6(d) +
C

η′1
C1(d) + Cη′1

∫ T

S

∫
|ut+d|>1

|ut + d|2q dx dt

≤ CC6(d) +
C

η′1
C1(d) + Cη′1

∫ T

S

∫
Ω

|ut|2q + Cη′1

∫ T

S

∫
Ω

|d|2q dx dt, (62)

where 0 < η′1 < 1. Then, using (37),∫ T

S

∫
Ω

|d||g(ut + d)| dx dt ≤ CC6(d) +
C

η′1
C1(d) + η′1(Cu + Cd,e)

∫ T

S

E(t) dt+ Cη′1C1(d)

≤ 1

η′1
Cd,e + η′1(Cu + Cd,e)

∫ T

S

E(t) dt. (63)

Combining (61) and (63),∫ T

S

∫
Ω

a(.)(ut + d)g(ut + d) dx dt ≤ E(S) + (η1 + η′1(Cu + Cd,e))

∫ T

S

E dt+
1

η1η′1
Cd,e. (64)

Combining now (64), (61) and (59), we obtain that

V1 ≤ C

(
η0 +

η′1
η0

(Cu + Cd,e) +
η1

η0

)∫ T

S

E dt+
C

η0

E(S) +
1

η1η0η′1
Cd,e.

We take η1 = η2
0 and η′1 =

η20
Cu+Cd,e

if Cu + Cd,e > 0. In that case, V1 would be estimated by

V1 ≤ Cη0

∫ T

S

E dt+
C

η0

E(S) +
1

η5
0

Cd,e(Cu + Cd,e). (65)

If Cu = Cd,e = 0, the above equation holds true trivially.

Remark 3.3 With such a choice of η1 and η
′
1, we have the following useful estimate obtained from

(64): ∫ T

S

∫
Ω

a(.)(ut + d)g(ut + d) dx dt ≤ E(S) + Cη2
0

∫ T

S

E dt+
1

η4
0

(Cd,eCu + Cd,e). (66)

To estimate V2, �rst notice that from Rellich-Kondrachov's theorem in dimension two (cf. [6]) that
H1(Ω) ⊂ Lq+1(Ω), which means that ∃ C > 0 such that ‖z‖Lq+1(Ω) ≤ C‖z‖H1(Ω), adding to that
the fact that z ∈ H1

0 (Ω) and (51), it holds that

‖z‖Lq+1(Ω) ≤ C
√
E. (67)
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Then, using Hölder inequality yields

V2 ≤
∫ T

S

(∫
|ut+d|>1

(a|g(ut + d)|)
q+1
q dx

) q
q+1
(∫
|ut+d|>1

|z|q+1 dx

) 1
q+1

dt. (68)

Combining (68) with the hypothesis given by (4), we get that

V2 ≤ C

∫ T

S

(∫
|ut+d|>1

a|ut + d||g(ut + d)| dx
) q

q+1
(∫
|ut+d|>1

|z|q+1 dx

) 1
q+1

dt.

Using Young inequality for an arbitrary 0 < η2 < 1,

V2 ≤ C

∫ T

S

 1

η
q+1
q

2

∫
|ut+d|>1

a(x)(ut + d)g(ut + d) dx+ ηq+1
2

∫
Ω

|z|q+1 dx

 dt

≤ C

∫ T

S

 1

η
q+1
q

2

∫
Ω

a(x)(ut + d)g(ut + d) dx+ ηq+1
2

∫
Ω

|z|q+1 dx

 dt

≤ C

∫ T

S

 1

η
q+1
q

2

∫
Ω

a(x)utg(ut + d) dx+
C

η
q+1
q

2

∫
Ω

|d||g(ut + d)| dx+ ηq+1
2

∫
Ω

|z|q+1 dx

 dt. (69)

The previous inequality combined with (19) and (67) implies that

V2 ≤ C

∫ T

S

 1

η
q+1
q

2

(−E ′)− 1

η
q+1
q

2

∫
Ω

ute dx+
C

η
q+1
q

2

∫
Ω

|d||g(ut + d)| dx+ ηq+1
2 E

q+1
2

 dt.

Then, using (20), E satis�es∫ T

S

E
q+1
2 dt =

∫ T

S

E
q−1
2 E dt ≤ (CE(0) + Cd,e)

q−1
2

∫ T

S

E dt ≤ (Cu + Cd,e)

∫ T

S

E dt, (70)

which gives that

V2 ≤
C

η
q+1
q

2

E(S) + ηq+1
2 (Cu + Cd,e)

∫ T

S

Edt+
C

η
q+1
q

2

∫ T

S

(
−
∫

Ω

ute dx+

∫
Ω

|d||g(ut + d)| dx
)
dt.

We �x η2 =
(

η0
(Cu+Cd,e)

) 1
q+1

. It follows that

ηq+1
2 (Cu + Cd,e) = η0,

C

η
q+1
q

2

= C
(Cu + Cd,e)

1
q

η
1
q

0

≤ C

η0

(C
1
q
u + C

1
q

d,e) =
1

η
1
q

0

(Cu + Cd,e) ,

which leads to

V2 ≤
1

η
1
q

0

(Cu + Cd,e)E(S) + η0

∫ T

S
Edt+

1

η
1
q

0

(Cu + Cd,e)

∫ T

S

(
−
∫

Ω
ute dx+

∫
Ω
|d||g(ut + d)| dx

)
dt.

(71)
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To �nish the estimation of V2, we still have to handle the last two integral terms in (71).

On one hand, we have already estimated the term
∫ T
S

∫
Ω
|d||g(ut + d)| dx dt in (63). We have

immediately for some 0 < η3 < 1 that

(Cu + Cd,e)

∫ T

S

∫
Ω
|d||g(ut + d)| dx dt ≤ η3(Cu + Cd,e)

∫ T

S
E dt+

1

η3
(Cd,eCu + Cd,e). (72)

Choosing η3 to be equal to
η
q+1
q

0

(Cu+Cd,e)
implies that

η3(Cu + Cd,e) = η
q+1
q

0 ,

1

η3

(Cd,eCu + Cd,e) ≤
1

η
q+1
q

0

(Cd,eCu + Cd,e),

which gives that

(Cu + Cd,e)

∫ T

S

∫
Ω

|d||g(ut + d)| dx dt ≤ η
q+1
q

0

∫ T

S

E dt+
1

η
q+1
q

0

(Cd,eCu + Cd,e) . (73)

On the other hand, we have for 0 < η4 < 1 that

(Cu + Cd,e)

∫ T

S

∫
Ω

ute dx dt ≤ η4(Cu + Cd,e)

∫ T

S

E dt+
1

η4

(Cd,eCu + Cd,e).

Using the same concept as before, we �x η4 =
η
q+1
q

0

Cu+Cd,e
, we obtain that

(Cu + Cd,e)

∫ T

S

∫
Ω

ute dx dt ≤ η
q+1
q

0

∫ T

S

E dt+
1

η
q+1
q

0

(Cd,eCu + Cd,e) , (74)

Combining (71), (73) and (74), we conclude that the estimation of V2 is given by

V2 ≤
1

η
1
q

0

(Cu + Cd,e)E(S) + η0

∫ T

S

Edt+
1

η
q+2
q

0

(Cd,eCu + Cd,e) . (75)

As for V3, we simply have when using (51) and Young inequality with η0 that

V3 ≤ Cη0

∫ T

S

E dt+
C

η0

C̄1(e),

which means that

V3 ≤ Cη0

∫ T

S

E dt+
1

η0

Cd,e. (76)

To achieve an estimation of S2, we just combine (56),(57) (65), (75) and (76) to get

S2 ≤ Cη0

∫ T

S

E dt+
C

η0

∫ T

S

∫
ω

u2
t dx dt+

C +
C

η0

+
1

η
1
q

0

(Cu + Cd,e)

E(S)

+

 1

η5
0

+
1

η
q+2
q

0

 (Cd,eCu + Cd,e) +

(
1

η0

+ 1

)
Cd,e. (77)
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We can simplify the previous estimate by using the fact that 0 < η0 < 1. As a result, (77) becomes

S2 ≤ Cη0

∫ T

S

E dt+
C

η0

∫ T

S

∫
ω

u2
t dx dt+

1

η0

(C + Cu + Cd,e)E(S) +
1

η5
0

(Cd,eCu + Cd,e) . (78)

Regarding S3, we follow the same steps we followed to get V1 +V2. It is possible because u satis�es
the same result (67) as z from before. Hence, we obtain that

S3 ≤ Cη0

∫ T

S

E dt+
1

η0

(C + Cu + Cd,e)E(S) +
1

η5
0

(Cd,eCu + Cd,e) . (79)

Finally, to estimate S4, we simply have when using young inequality that

S4 ≤ η0

∫ T

S

E dt+
1

η0

Cd,e. (80)

We complete the estimate of T2 in (46) by combining the estimations of S1, S2, S3 and S4. Hence
the proof of Lemma 3.6 is completed.

�

An estimate of T3 is provided in the next lemma:

Lemma 3.8 Under the hypotheses of Proposition 3.1, we have the following estimate:

T3 ≤ Cη0

∫ T

S
E dt+

1

η0
[C + (1 + Cη0)(Cu + Cd,e)]E(S) +

1

η5
0

(
C3
η0 + 1

)
(Cd,eCu + Cd,e) , (81)

where 0 < η0 < 1 is a positive arbitrary real number to be chosen later and Cη0 is an implicit
positive constant that depends on η0 only.

Proof of Lemma 3.8: First, note that

T3 ≤
1

2
S3 +

∫ T

S

∫
Ω

|ag(ut + d)∇u.h| dx dt︸ ︷︷ ︸
X

. (82)

We have already estimated S3 in (79). It remains to deal with X. Using Young inequality implies
that

X ≤ C

η0

∫ T

S

∫
Ω

(a|g(ut + d)|)2 dx dt+ Cη0

∫ T

S

∫
Ω

|∇u|2 dx dt

≤ C

η0

∫ T

S

∫
Ω

a|g(ut + d)|2 dx dt+ Cη0

∫ T

S

E dt. (83)

Now, set R1 > 1 to be chosen later. We can rewrite the term
∫ T
S

∫
Ω
a|g(ut + d)|2 dx dt as∫ T

S

∫
Ω

a|g(ut + d)|2 dx dt =

∫ T

S

∫
|ut+d|≤R1

a|g(ut + d)|2 dx dt︸ ︷︷ ︸
Y1

+

∫ T

S

∫
|ut+d|>R1

a|g(ut + d)|2 dx dt︸ ︷︷ ︸
Y2

.

(84)
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Since g(0) = 0, it holds that |g(x)| ≤ CR1|x| for some constant CR1 and for |x| < R1. Combine it
with (66), it follows that Y1 satis�es for some 0 < η5 < 1

Y1 ≤ CR1

∫ T

S

∫
|ut+d|≤R1

|ag(ut + d)||ut + d| dx dt

≤ CR1

∫ T

S

∫
Ω

|ag(ut + d)||ut + d| dx dt

≤ CR1E(S) + CCR1η
2
5

∫ T

S

E dt+
CR1

η4
5

(Cd,eCu + Cd,e). (85)

Taking η5 = η0√
CCR1

leads to

Y1 ≤ CR1E(S) + η2
0

∫ T

S

E dt+
C3
R1

η4
0

(Cd,eCu + Cd,e) (86)

As for Y2, we use (4) to obtain that

Y2 ≤ C

∫ T

S

∫
|ut+d|>R1

|ut + d|2q dx dt

≤ C

∫ T

S

∫
|ut+d|>R1

|ut|2q dx dt+ C

∫ T

S

∫
|ut+d|>R1

|d|2q dx

≤ C

∫ T

S

∫
|ut+d|>R1

|ut + d|
R1

|ut|2q dx dt+ C

∫ T

S

∫
Ω

|d|2q dx dt

≤ C

∫ T

S

∫
Ω

|ut|
R1

|ut|2q dx dt+ C

∫ T

S

∫
Ω

|d|
R1

|ut|2q dx dt+ CC1(d)

≤ C

R1

∫ T

S

∫
Ω

|ut|2q+1 dx dt+
C

R2
1

∫ T

S

∫
Ω

|ut|4q dx dt+ Cd,e.

Then, we use Lemma 3.3 as well as the fact that R1 > 1 to conclude that Y2 satis�es

Y2 ≤
1

R1

(Cu + Cd,e)

∫ T

S

E dt+ Cd,e.

We take R1 =
(Cu+Cd,e)

η20
, we get the simpli�ed estimate

Y2 ≤ η2
0

∫ T

S

E dt+ Cd,e. (87)

Remark 3.4 For such a choice of R1, and based on how CR1 is de�ned, we can assume that CR1

in (86) is a constant of the type Cη0(Cu + Cd,e), where Cη0 is a positive constant that depends on
η0 only.

Combining (83), (84), (86) and (87) implies that

X ≤ Cη0

∫ T

S
E dt+

Cη0
η0

(Cd,e + Cu)E(S) +
C3
η0

η5
0

(Cd,eCu + Cd,e) +
Cd,e
η0

. (88)

Finally, we combine (82) and (88) with the estimation of S3, we obtain (81).
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We next seek to prove the upper bound of T4 that is given by the following lemma

Lemma 3.9 Under the hypotheses of Proposition 3.1, the following estimate holds:

T4 ≤ Cη0

∫ T

S

E dt+
C

η0

Cd,e, (89)

where 0 < η0 < 1 is a positive constant to be chosen later.

Proof of Lemma 3.9: We have that

T4 ≤
1

2

∫ T

S

∫
Ω

|eu| dx dt+

∫ T

S

∫
Ω

|e∇u.h| dx dt. (90)

On one hand, using Young inequality gives that∫ T

S

∫
Ω

|eu| dx dt ≤ η0

∫ T

S

E dt+
C

η0

Cd,e. (91)

On the other hand, it gives that∫ T

S

∫
Ω

|e∇u.h| dx dt ≤ η0

∫ T

S

E dt+
C

η0

Cd,e (92)

Combining (90), (91) and (92), we prove (89).

�

It remains to handle the last term T5.

Lemma 3.10 Under the hypotheses of Proposition 3.1, we have the following estimation:

T5 ≤ η0

∫ T

S

E dt+ C̄η0(Cu + Cd,e)E(S) +
C̄3
η0

η2
0

(Cd,eCu + Cd,e) + Cd,e, (93)

where 0 < η0 < 1 is a positive constant to be chosen later and and C̄η0 is an implicit positive
constant that depends on η0 only.

Proof of Lemma 3.10: For every R2 > 1, we have that

T5 ≤
1

a0

∫ T

S

∫
ω

a(x)u2
t dx dt ≤ C

∫ T

S

∫
Ω

a(x)(ut + d)2 dx dt+ C

∫ T

S

∫
Ω

a(x)d2 dx dt

≤ C

∫ T

S

∫
|ut+d|≤R2

a(x)(ut + d)2 dx dt︸ ︷︷ ︸
Z1

+C

∫ T

S

∫
|ut+d|>R2

a(x)(ut + d)2 dx dt︸ ︷︷ ︸
Z2

+CC1(d). (94)

20



On one hand, since g′(0) > 0, there exists αR2 > 0 such that |g(v)| ≥ αR2|v| for |v| ≤ R2.
Combining that with (66) yields for some 0 < η6 < 1

Z1 ≤
∫ T

S

∫
|ut+d|≤R2

a(x)(ut + d)g(ut + d)
(ut + d)

g(ut + d)
dx dt

≤ 1

αR2

∫ T

S

∫
|ut+d|≤R2

a(x)(ut + d)g(ut + d) dx dt

≤ 1

αR2

∫ T

S

∫
Ω

a(x)(ut + d)g(ut + d) dx dt

≤ 1

αR2

E(S) + C
1

αR2

η2
6

∫ T

S

E dt+
1

αR2

1

η4
6

(Cd,eCu + Cd,e).

We choose η6 =
√

αR2

C
η0, we obtain that

Z1 ≤
1

αR2

E(S) + η0

∫ T

S

E dt+
1

α3
R2
η2

0

(Cd,eCu + Cd,e).

As for Z2, we have that

Z2 ≤ C

∫ T

S

∫
|ut+d|>R2

|ut|2 dx dt+ C

∫ T

S

∫
|ut+d|>R2

|d|2 dx dt

≤ C

∫ T

S

∫
|ut+d|>R2

|ut + d|
R2

|ut|2 dx dt+ CC1(d)

≤ C

∫ T

S

∫
|ut+d|>R2

|ut|3

R2

dx dt+ C

∫ T

S

∫
|ut+d|>R2

|ut|2|d|
R2

dx dt+ CC1(d)

≤ C

R2

∫ T

S

∫
|ut+d|>R2

|ut|3 dx dt+
C

R2
2

∫ T

S

∫
|ut+d|>R2

|ut|4 dx dt+ CC1(d). (95)

We use Lemma 3.3 and the fact that R2 > 1, we derive the following:

C

R2

∫ T

S

∫
|ut+d|>R2

|ut|3 dx dt+
C

R2
2

∫ T

S

∫
|ut+d|>R2

|ut|4 dx dt ≤
(
Cu + Cd,e

R2

)∫ T

S

E dt. (96)

We choose R2 =
(Cu+Cd,e)

η0
and we combine (95) and (96) we have that

Z2 ≤ η0

∫ T

S

E dt+ Cd,e. (97)

Remark 3.5 For such a choice of R2, and based on how αR2 is de�ned, we can assume that 1
αR2

is also a constant of the type C̄η0 (Cu + Cd,e), where C̄η0 is a constant that depends on η0 only. As
a result, Z1 is estimated by

Z1 ≤ η0

∫ T

S

E dt+ C̄η0(Cu + Cd,e)E(S) +
C̄3
η0

η2
0

(Cd,eCu + Cd,e) . (98)
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Combining (94), (97) and (98) and using (10) and (13), it follows that

T5 ≤ η0

∫ T

S

E dt+ C̄η0(Cu + Cd,e)E(S) +
C̄3
η0

η2
0

(Cd,eCu + Cd,e) + Cd,e,

which proves Lemma 3.10.

�

The estimation of T5 gives a direct estimation of the term C
η0

∫ T
S

∫
ω
u2
t dx dt left in the estimation

of T2. We can easily manage to have that

1

η0

∫ T

S

∫
ω

u2
t dx dt ≤ η0

∫ T

S

E dt+
1

η0

C̄η20(Cu + Cd,e)E(S) +
1

η0

C̄3
η20

η4
0

(Cd,eCu + Cd,e) + Cd,e. (99)

It is obtained by following the same steps that led to the estimation of T5 with replacing η0 by η
2
0.

We can �nally �nish the proof of Proposition 3.1: we combine the estimations of Ti, i = 1, 2, 3, 4, 5,
which are given by (42), (43), (81), (89) and (93) with (41), then we choose η0 such that Cη0 < 1,

which means that the term Cη0

∫ T
S
E(t) dt gets absorbed by

∫ T
S
E(t) dt. Then we use the fact that

Cd,eE(S) ≤ Cd,e(E(0) +Cd,e) = Cd,eCu +Cd,e and the fact that the choice of η0 will be a constant
C, we obtain (39).

�

Proof of the energy estimate of Theorem 2.1: Using the key result given by (39), we get at
once from Theorem A.1 that (101) holds true with T = C +Cu and C0 = (1 +Cu)Cd,e. Using (20)
for t ≥ 1 with T = t and S ∈ [t− 1, t] and integrating it over [t− 1, t], one gets that

E(t) ≤ C

∫ t

t−1

E(s) ds+ Cd,e ≤ C

∫ ∞
t−1

E(s) ds+ Cd,e.

Combining the above with (100) yields (18) for t ≥ 1. In turn, (20) with T ∈ [0, 1] and S = 0
provides (18) for t ≤ 1. The proof of Theorem 2.1 is then completed.

�

A Appendix

We list in what follows, technical results used in the core of the paper.

Theorem A.1 Gronwall integral lemma
Let E : R+ → R+ satisfy for some C0, T > 0:∫ +∞

t

E(s)ds ≤ TE(t) + C0, ∀ t ≥ 0. (100)

Then, the following estimate hold true∫ +∞

t

E(s)ds ≤ TE(0)e−
t
T + C0, ∀ t ≥ 0. (101)

If in addition, t 7→ E(t) is non-increasing, one has

E(t) ≤ E(0)e1− t
T +

C0

T
, ∀ t ≥ 0. (102)
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The proof is classical, cf. for instance [3].

Theorem A.2 Generalized Gronwall lemma
Let F, h1 and h2 non negative functions de�ned on R+ satisfying

‖h1‖1 :=

∫ ∞
0

h1(t)dt <∞, ‖h2‖1 :=

∫ ∞
0

h2(t)dt <∞,

and

F (T ) ≤ F (S) + C3 + C1

∫ T

S

h1(s)Fα1(s)ds+ C2

∫ T

S

h2(s)Fα2(s)ds, ∀ S ≤ T, (103)

where C1, C2, C3 are positive constants and 0 ≤ α1, α2 < 1. Then, F satis�es the following bound

sup
t∈[S,T ]

F (t) ≤ max
(

2(F (S) + C3), (2C̃)
1

1−α

)
, with C̃ := C1‖h1‖1 + C2‖h2‖1, (104)

where α := max(α1, α2) if 2C̃ ≥ 1 or α := min(α1, α2) if 2C̃ < 1.

Proof of Theorem A.2: Fix T ≥ S ≥ 0. For t ∈ [S, T ] set Y (t) for the right-hand side of (103)
applied at the pair of times S ≤ t. It de�nes a non decreasing absolutely continuous function.
Since F (t) ≤ Y (t) ≤ Y (T ) for t ∈ [S, T ], one deduces that FS,T := supt∈[S,T ] F (t) is �nite for every
t ∈ [S, T ]. One gets from (103) that

FS,T ≤ F (S) + C3 + C̃ max(Fα1
S,T , F

α2
S,T ),

with the notations of (104). The latter follows at once by considering whether F (S) + C3 >
C̃ max(Fα1

S,T , F
α2
S,T ) or not.

We recall the following useful result, cf. for instance [16].

Theorem A.3 Gagliardo�Nirenberg interpolation inequality
Let Ω ⊂ RN be a bounded Lipschitz domain, N ≥ 1, 1 ≤ r < p ≤ ∞, 1 ≤ q ≤ p and m ≥ 0. Then
the inequality

‖v‖p ≤ C‖v‖θm,q‖v‖1−θ
r for v ∈ Wm,q(Ω) ∩ Lr(Ω) (105)

holds for some constant C > 0 and

θ =

(
1

r
− 1

p

)(
m

N
+

1

r
− 1

q

)−1

, (106)

where 0 < θ ≤ 1 (0 < θ < 1 if p =∞ and mq = N) and ‖.‖p denotes the usual Lp(Ω) norm and
‖.‖m,q the norm in Wm,q(Ω).
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