Skip to Main content Skip to Navigation


...
hal-01080131v1  Journal articles
François HamelGrégoire NadinLionel Roques. A viscosity solution method for the spreading speed formula in slowly varying media
Indiana University Mathematics Journal, Indiana University Mathematics Journal, 2011, 60 (4), pp.1229 - 1248. ⟨10.1512/iumj.2011.60.4370⟩
...
hal-01080135v1  Journal articles
Henri BerestyckiGrégoire Nadin. Spreading speeds for one-dimensional monostable reaction-diffusion equations
Journal of Mathematical Physics, American Institute of Physics (AIP), 2012, 53, pp.115619. ⟨10.1063/1.4764932⟩
...
hal-01360636v1  Journal articles
Grégoire Nadin. The Effect of the Schwarz Rearrangement on the Periodic Principal Eigenvalue of a Nonsymmetric Operator
SIAM Journal on Mathematical Analysis, Society for Industrial and Applied Mathematics, 2010, 41 (6), pp.2388-2406. ⟨10.1137/080743597⟩
...
hal-01080139v1  Journal articles
Grégoire NadinLuca Rossi. Propagation phenomena for time heterogeneous KPP reaction–diffusion equations
Journal de Mathématiques Pures et Appliquées, Elsevier, 2012, 98, pp.633 - 653. ⟨10.1016/j.matpur.2012.05.005⟩
...
hal-00849405v2  Journal articles
Emeric BouinVincent CalvezGrégoire Nadin. Propagation in a kinetic reaction-transport equation: travelling waves and accelerating fronts
Archive for Rational Mechanics and Analysis, Springer Verlag, 2015, 217 (2), pp.571-617
...
hal-00871135v2  Journal articles
Gilles MarckGrégoire NadinYannick Privat. What is the optimal shape of a fin for one dimensional heat conduction?
SIAM Journal on Applied Mathematics, Society for Industrial and Applied Mathematics, 2014, 74 (4), pp.1194--1218. ⟨10.1137/130941377⟩
...
hal-01226854v2  Journal articles
Grégoire NadinLuca Rossi. Generalized transition fronts for one-dimensional almost periodic Fisher-KPP equations
Archive for Rational Mechanics and Analysis, Springer Verlag, 2016
...
hal-01171334v4  Journal articles
Henri BerestyckiGrégoire Nadin. Asymptotic spreading for general heterogeneous Fisher-KPP type equations
Memoirs of the American Mathematical Society, American Mathematical Society, In press
...
hal-00632597v2  Journal articles
Emeric BouinVincent CalvezGrégoire Nadin. Hyperbolic traveling waves driven by growth
Mathematical Models and Methods in Applied Sciences, World Scientific Publishing, 2014, 24 (6), http://www.worldscientific.com/doi/abs/10.1142/S0218202513500802. ⟨10.1142/S0218202513500802⟩
...
hal-02432387v2  Journal articles
Idriss MazariGrégoire NadinYannick Privat. Shape optimization of a weighted two-phase Dirichlet eigenvalue
Archive for Rational Mechanics and Analysis, Springer Verlag, In press
hal-00992995v1  Journal articles
Arnaud DucrotGrégoire Nadin. Asymptotic behaviour of travelling waves for the delayed Fisher-KPP equation
Journal of Differential Equations, Elsevier, 2014, pp.3115-3140
...
hal-02273079v2  Journal articles
Cécile CarrèreGrégoire Nadin. Influence of mutations in phenotypically-structured populations in time periodic environment
Discrete and Continuous Dynamical Systems - Series B, American Institute of Mathematical Sciences, 2020
...
hal-01360584v1  Journal articles
Grégoire Nadin. Traveling fronts in space-time periodic media
Journal de Mathématiques Pures et Appliquées, Elsevier, 2009, 92, pp.232-262
...
hal-01134013v2  Journal articles
Grégoire NadinYannick Privat. An extremal eigenvalue problem arising in heat conduction
Journal de Mathématiques Pures et Appliquées, Elsevier, 2016, 105 (6), pp.845--872. ⟨10.1016/j.matpur.2016.02.005⟩
...
hal-01360594v1  Journal articles
Grégoire Nadin. How does the spreading speed associated with the Fisher-KPP equation depend on random stationary diffusion and reaction terms?
Discrete and Continuous Dynamical Systems - Series B, American Institute of Mathematical Sciences, 2015, 20 (6), pp.1785-1803. ⟨10.3934/dcdsb.2015.20.1785⟩
...
hal-00872908v2  Journal articles
Juliette BouhoursGrégoire Nadin. A variational approach to reaction diffusion equations with forced speed in dimension 1
Discrete and Continuous Dynamical Systems - Series A, American Institute of Mathematical Sciences, 2015, 35 (5), pp.1843-1872. ⟨10.3934/dcds.2015.35.1843⟩