Skip to Main content Skip to Navigation

hal-01248678v1  Conference papers
Carson ErinJames W. DemmelLaura GrigoriKnight NickKoanantakool Penporn et al.  Write-Avoiding Algorithms
Proceedings of IEEE International Parallel & Distributed Processing Symposium, IPDPS 2016, 2016, Chicago, United States
hal-03566883v1  Journal articles
Gloria FaccanoniStéphane DellacherieBérénice GrecFrédéric LagoutièreYohan Penel. Workshop on low velocity flows: application to low Mach and low Froude regimes
ESAIM: Proceedings and Surveys, EDP Sciences, 2017, LMLFN 2015 – Low Velocity Flows – Application to Low Mach and Low Froude regimes, 58, pp.I-II. ⟨10.1051/proc/201758000⟩
hal-01618357v2  Book sections
Luís AlmeidaRebecca H ChisholmJean ClairambaultTommaso LorenziAlexander Lorz et al.  Why Is Evolution Important in Cancer and What Mathematics Should Be Used to Treat Cancer? Focus on Drug Resistance
Trends in Biomathematics: Modeling, Optimization and Computational Problems: Selected works from the BIOMAT Consortium Lectures, Moscow 2017, Springer International Publishing, pp.107-120, 2018
hal-02145268v1  Journal articles
Sergio ContiMatteo FocardiFlaviana Iurlano. Which special functions of bounded deformation have bounded variation?
Proceedings of the Royal Society of Edinburgh: Section A, Mathematics, Royal Society of Edinburgh, 2018, 148 (1), pp.33-50. ⟨10.1017/S030821051700004X⟩
hal-00871135v2  Journal articles
Gilles MarckGrégoire NadinYannick Privat. What is the optimal shape of a fin for one dimensional heat conduction?
SIAM Journal on Applied Mathematics, Society for Industrial and Applied Mathematics, 2014, 74 (4), pp.1194--1218. ⟨10.1137/130941377⟩
hal-03517061v1  Preprints, Working Papers, ...
Jean-Paul Penot. What is a Lipschitzian Manifold?
hal-01528525v1  Journal articles
Jean-Yves CheminDelphine Salort. Wellposedness of some quasi-linear Schrodinger equations
Science China Mathematics, Science China Press, 2015, 58 (5), pp.891-914. ⟨10.1007/s11425-015-4993-5⟩
hal-01389812v2  Journal articles
Mitia Duerinckx. Well-posedness for mean-field evolutions arising in superconductivity
Annales de l'Institut Henri Poincaré C, Analyse non linéaire, 2017
hal-00019166v1  Journal articles
Hervé Le Dret. Well-posedness for Koiter and Nagdhi shells with a G1-midsurface
Analysis and Applications, World Scientific Publishing, 2004, 2, pp.365-388
hal-00789315v1  Journal articles
Boris AndreianovFrédéric LagoutièreNicolas SeguinTakéo Takahashi. Well-posedness for a one-dimensional fluid-particle interaction model
SIAM Journal on Mathematical Analysis, Society for Industrial and Applied Mathematics, 2014, 46 (2)