Electronic-enthalpy functional for finite systems under pressure - Université Pierre et Marie Curie Accéder directement au contenu
Article Dans Une Revue Physical Review Letters Année : 2005

Electronic-enthalpy functional for finite systems under pressure

Résumé

We introduce the notion of electronic enthalpy for first-principles structural and dynamical calculations of finite systems under pressure. An external pressure field is allowed to act directly on the electronic structure of the system studied via the ground-state minimization of the functional $E+PV_{q}$, where $V_{q}$ is the quantum volume enclosed by a charge isosurface. The Hellmann-Feynman theorem applies, and assures that the ionic equations of motion follow an isoenthalpic dynamics. No pressurizing medium is explicitly required, while coatings of environmental ions or ligands can be introduced if chemically relevant. We apply this novel approach to the study of group-IV nanoparticles during a shock wave, highlighting the significant differences inthe plastic or elastic response of the diamond cage under load, and their potential use as novel nanostructured impact-absorbing materials.

Dates et versions

hal-00019384 , version 1 (21-02-2006)

Identifiants

Citer

Matteo Cococcioni, Francesco Mauri, Gerbrand Ceder, Nicola Marzari. Electronic-enthalpy functional for finite systems under pressure. Physical Review Letters, 2005, 94, pp.145501. ⟨10.1103/PhysRevLett.94.145501⟩. ⟨hal-00019384⟩
77 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More