Polar vortex evolution during the 2002 Antarctic major warming as observed by the Odin satellite - Université Pierre et Marie Curie Accéder directement au contenu
Article Dans Une Revue Journal of Geophysical Research: Atmospheres Année : 2005

Polar vortex evolution during the 2002 Antarctic major warming as observed by the Odin satellite

Franck Lefèvre
Gwenaël Berthet
C. Boonne
  • Fonction : Auteur
Alain Hauchecorne

Résumé

In September 2002 the Antarctic polar vortex split in two under the influence of a sudden warming. During this event, the Odin satellite was able to measure both ozone (O3) and chlorine monoxide (ClO), a key constituent responsible for the so-called “ozone hole”, together with nitrous oxide (N2O), a dynamical tracer, and nitric acid (HNO3) and nitrogen dioxide (NO2), tracers of denitrification. The submillimeter radiometer (SMR) microwave instrument and the Optical Spectrograph and Infrared Imager System (OSIRIS) UV-visible light spectrometer (VIS) and IR instrument on board Odin have sounded the polar vortex during three different periods: before (19–20 September), during (24–25 September), and after (1–2 and 4–5 October) the vortex split. Odin observations coupled with the Reactive Processes Ruling the Ozone Budget in the Stratosphere (REPROBUS) chemical transport model at and above 500 K isentropic surfaces (heights above 18 km) reveal that on 19–20 September the Antarctic vortex was dynamically stable and chemically nominal: denitrified, with a nearly complete chlorine activation, and a 70% O3 loss at 500 K. On 25–26 September the unusual morphology of the vortex is monitored by the N2O observations. The measured ClO decay is consistent with other observations performed in 2002 and in the past. The vortex split episode is followed by a nearly complete deactivation of the ClO radicals on 1–2 October, leading to the end of the chemical O3 loss, while HNO3 and NO2 fields start increasing. This acceleration of the chlorine deactivation results from the warming of the Antarctic vortex in 2002, putting an early end to the polar stratospheric cloud season. The model simulation suggests that the vortex elongation toward regions of strong solar irradiance also favored the rapid reformation of ClONO2. The observed dynamical and chemical evolution of the 2002 polar vortex is qualitatively well reproduced by REPROBUS. Quantitative differences are mainly attributable to the too weak amounts of HNO3 in the model, which do not produce enough NO2 in presence of sunlight to deactivate chlorine as fast as observed by Odin.
Fichier principal
Vignette du fichier
Ricaud_et_al-2005-Journal_of_Geophysical_Research__Solid_Earth_(1978-2012).pdf (1.09 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-00077970 , version 1 (18-02-2016)

Identifiants

Citer

P. Ricaud, Franck Lefèvre, Gwenaël Berthet, D. Murtagh, E.-J. Llewellyn, et al.. Polar vortex evolution during the 2002 Antarctic major warming as observed by the Odin satellite. Journal of Geophysical Research: Atmospheres, 2005, 110 (D5), pp.D05302. ⟨10.1029/2004JD005018⟩. ⟨hal-00077970⟩
1870 Consultations
107 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More