Empirical study of multifractal phase transitions in atmospheric turbulence - Archive ouverte HAL Access content directly
Journal Articles Nonlinear Processes in Geophysics Year : 1994

Empirical study of multifractal phase transitions in atmospheric turbulence

(1) , (1) , (2) , (3)
1
2
3

Abstract

We study atmospheric wind turbulence in the framework of universal multifractals, using several medium resolution (10 Hz) time series. We cut these original time series into 704 scale invariant realizations. We then compute the moment scaling exponent of the energy flux K(q) for 4 and 704 realizations, in order to study qualitative difference between strong and weak events associated with multifractal phase transitions. We detect a first order multifractal phase transition of the energy flux at statistical moment of order qD ˜ 2.4 ± 0.2: this means that when the number of realizations increases, moments order q =; qD diverge. These results are confirmed by the study of probability distributions, and wind structure functions. A consequence of these findings is that it is no use to compare different cascade models in turbulence by using the high order wind structure functions, because a linear part will always be encountered for high enough order moments. Another important implication for multifractal studies of turbulence is that the asymptotic slope of the scaling moment function is purely a function of sample size and diverges with it; it implies the same for D8, which has often be considered as finite.
Fichier principal
Vignette du fichier
npg-1-95-1994.pdf (726.43 Ko) Télécharger le fichier
Origin : Explicit agreement for this submission

Dates and versions

hal-00331026 , version 1 (01-01-1994)

Licence

Attribution - CC BY 4.0

Identifiers

Cite

François G Schmitt, D Schertzer, S. Lovejoy, Y. Brunet. Empirical study of multifractal phase transitions in atmospheric turbulence. Nonlinear Processes in Geophysics, 1994, 1 (2/3), pp.95-104. ⟨10.5194/npg-1-95-1994⟩. ⟨hal-00331026⟩
563 View
161 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More