A new approach for estimating Titan's electron conductivity based on data from Relaxation Probe sensors on the Huygens Experiment - Université Pierre et Marie Curie Accéder directement au contenu
Article Dans Une Revue Planetary and Space Science Année : 2010

A new approach for estimating Titan's electron conductivity based on data from Relaxation Probe sensors on the Huygens Experiment

Résumé

The Huygens Probe measured the electrical conductivity of Titan atmosphere from about 140 km down to the surface, employing relaxation and mutual impedance techniques. Previous analyses have shown some differences on the conductivity measurements obtained with two independent sensors - Relaxation Probe (RP) and Mutual Impedance Probe (MIP). A 20-fold maximum discrepancy occurred around the conductivity peak at 60-70 km. To understand the nature of such discrepancy, we reassess the RP data by taking into account a geometrical factor related to the electrode finite size and the Debye length of the ionized medium. The present analysis implies replacing the standard Laplace field distribution by a more elaborated model considering the Poisson equation and the resistance between the RP electrodes and the medium. Although a complete understanding of the conductivity profile is still missing, this work brings RP and MIP data to a much better agreement. The conductivity maximum difference derived from the two sensors is now lower a factor of 2. This reassessment is also useful for future instruments and missions.

Dates et versions

hal-00526276 , version 1 (14-10-2010)

Identifiants

Citer

Gregorio J. Molina-Cuberos, R. Godard, José J. López-Moreno, Michel Hamelin, R. Grard, et al.. A new approach for estimating Titan's electron conductivity based on data from Relaxation Probe sensors on the Huygens Experiment. Planetary and Space Science, 2010, 58 (14-15), pp.1945-1952. ⟨10.1016/j.pss.2010.09.014⟩. ⟨hal-00526276⟩
228 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More