Asteroids' physical models from combined dense and sparse photometry and scaling of the YORP effect by the observed obliquity distribution - Université Pierre et Marie Curie Accéder directement au contenu
Article Dans Une Revue Astronomy and Astrophysics - A&A Année : 2013

Asteroids' physical models from combined dense and sparse photometry and scaling of the YORP effect by the observed obliquity distribution

Josef Hanuš (1) , J. Ďurech (1) , M. Brož (1) , A. Marciniak (2) , B. D. Warner (3) , F. Pilcher (4) , R. Stephens (5) , R. Behrend (6) , Benoît Carry (7) , D. Čapek (8) , P. Antonini (9) , M. Audejean (10) , K. Augustesen (11) , E. Barbotin (12) , P. Baudouin (13) , A. Bayol (11) , L. Bernasconi (14) , W. Borczyk (2) , J.-G. Bosch (15) , E. Brochard (16) , L. Brunetto (17) , S. Casulli (18) , A. Cazenave (12) , S. Charbonnel (12) , B. Christophe (19, 20) , François Colas (21) , J. Coloma (22) , M. Conjat (23) , W. Cooney (24) , H. Correira (25) , V. Cotrez (26) , A. Coupier (11) , R. Crippa (27) , M. Cristofanelli (17) , Ch. Dalmas (11) , C. Danavaro (11) , C. Demeautis (28) , T. Droege (29) , R. Durkee (30) , N. Esseiva (31) , M. Esteban (11) , M. Fagas (2) , G. Farroni (32) , M. Fauvaud (12, 33) , S. Fauvaud (12, 33) , F. del Freo (11) , L. Garcia (11) , S. Geier (34, 35) , C. Godon (11) , K. Grangeon (11) , H. Hamanowa (36) , N. Heck (21) , S. Hellmich (37) , D. Higgins (38) , R. Hirsch (2) , M. Husarik (39) , T. Itkonen (40) , O. Jade (11) , K. Kamiński (2) , P. Kankiewicz (41) , A. Klotz (42) , R. A. Koff (43) , A. Kryszczyńska (2) , T. Kwiatkowski (2) , A. Laffont (11) , A. Leroy (12) , J. Lecacheux (44) , Y. Leonie (11) , C. Leyrat (44) , F. Manzini (45) , A. Martin (11) , G. Masi (11) , D. Matter (11) , J. Michałowski (46) , M. J. Michałowski (47) , T. Michałowski (2) , J. Michelet (48) , R. Michelsen (11) , E. Morelle (49) , S. Mottola (37) , R. Naves (50) , J. Nomen (51) , J. Oey (52) , W. Ogloza (53) , A. Oksanen (49) , D. Oszkiewicz (35, 54) , P. Pääkkönen (40) , M. Paiella (11) , H. Pallares (11) , J. Paulo (11) , M. Pavic (11) , B. Payet (11) , M. Polińska (2) , D. Polishook (55) , R. Poncy (16) , Y. Revaz (56) , C. Rinner (32) , M. Rocca (11) , A. Roche (11) , D. Romeuf (11) , R. Roy (57) , H. Saguin (11) , P. A. Salom (11) , Sébastien Sanchez (51) , G. Santacana (12, 31) , T. Santana-Ros (2) , J.-P. Sareyan (44, 58) , K. Sobkowiak (2) , S. Sposetti (59) , D. Starkey (60) , R. Stoss (51) , J. Strajnic (11) , J.-P. Teng (61) , B. Tregon (12, 62) , A. Vagnozzi (63) , F. P. Velichko (64) , N. Waelchli (56) , K. Wagrez (11) , H. Wücher (31)
1 Astronomical Institute of Charles University
2 Astronomical Observatory [Poznan]
3 Palmer Divide Observatory
4 Organ Mesa Observatory
5 Goat Mountain Astronomical Research Station
6 Geneva Observatory
7 ESAC - European Space Astronomy Centre
8 ASU / CAS - Astronomical Institute of the Czech Academy of Sciences
9 Observatoire de Bédoin
10 Observatoire de Chinon
11 CdR & CdL group - Courbes de rotation d'astéroïdes, de comètes et d'étoiles variables
12 Association T60, Observatoire Midi-Pyrénées
13 Harfleur Observatory
14 Observatoire des Engarouines
15 Collonges Observatory
16 Chercheur indépendant
17 Observatoire N°139 d'Antibes
18 Osservatorio Colleverde di Guidonia
19 Observatoire de Saint-Sulpice N°947
20 DPHY, ONERA, Université Paris Saclay (COmUE) [Châtillon]
21 IMCCE - Institut de Mécanique Céleste et de Calcul des Ephémérides
22 Observatorio de San Gervasi
23 Observatoire de Cabris
24 Blackberry Observatory
25 Centre d'Astronomie de Saint-Michel l'Observatoire
26 Observatoire de Sainte-Hélène
27 Observatorio Astronómico de Tradate
28 138 Village-Neuf
29 TASS - The Amateur Sky Survey
30 Shed of Science Observatory
31 Association AstroQueyras
32 AUDE - Association des Utilisateurs de Détecteurs Electroniques
33 Observatoire du Bois de Bardon
34 DARK - Dark Cosmology Centre
35 NOT - Nordic Optical Telescope
36 Hamanowa Astronomical Observatory
37 DLR Institute of Planetary Research
38 Hunters Hill Observatory
39 Skalnaté Pleso Observatory
40 A83 Jakokoski Observatory
41 Institute of Physics [Kielce]
42 IRAP - Institut de recherche en astrophysique et planétologie
43 Antelope Hills Observatory
44 LESIA - Laboratoire d'études spatiales et d'instrumentation en astrophysique
45 Stazione Astronomica di Sozzago
46 Forte Software
47 SUPA - Scottish Universities Physics Alliance, Institute for Astronomy
48 CALA - Club d'Astronomie Lyon Ampéré [Vaulx-en-Velin]
49 NYTT - Nyrölä Observatory
50 Observatorio Montcabre
51 OAM - Observatorio Astronómico de Mallorca
52 Kingsgrove Observatory
53 Mt. Suhora Observatory
54 Department of Physics [Helsinki]
55 EAPS - Department of Earth, Atmospheric and Planetary Sciences [MIT, Cambridge]
56 François-Xavier Bagnoud Observatory
57 Blauvac Obsevatory
58 OCA - Observatoire de la Côte d'Azur
59 Gnosca Observatory
60 DeKalb Observatory
61 Observatoire astronomique des Makes
62 LKB (Lhomond) - Laboratoire Kastler Brossel
63 OAPD - INAF - Osservatorio Astronomico di Padova
64 Institute of Astronomy [Kharkiv]
M. Brož
A. Marciniak
R. Behrend
  • Fonction : Auteur
Benoît Carry
P. Baudouin
  • Fonction : Auteur
M. Conjat
  • Fonction : Auteur
W. Cooney
  • Fonction : Auteur
C. Demeautis
  • Fonction : Auteur
T. Droege
  • Fonction : Auteur
A. Leroy
J. Michałowski
  • Fonction : Auteur
E. Morelle
  • Fonction : Auteur
R. Naves
  • Fonction : Auteur
J. Oey
  • Fonction : Auteur
W. Ogloza
  • Fonction : Auteur
A. Oksanen
  • Fonction : Auteur
R. Poncy
  • Fonction : Auteur
R. Roy
  • Fonction : Auteur
T. Santana-Ros
S. Sposetti
  • Fonction : Auteur
D. Starkey
  • Fonction : Auteur

Résumé

The larger number of models of asteroid shapes and their rotational states derived by the lightcurve inversion give us better insight into both the nature of individual objects and the whole asteroid population. With a larger statistical sample we can study the physical properties of asteroid populations, such as main-belt asteroids or individual asteroid families, in more detail. Shape models can also be used in combination with other types of observational data (IR, adaptive optics images, stellar occultations), e.g., to determine sizes and thermal properties. We use all available photometric data of asteroids to derive their physical models by the lightcurve inversion method and compare the observed pole latitude distributions of all asteroids with known convex shape models with the simulated pole latitude distributions. We used classical dense photometric lightcurves from several sources and sparse-in-time photometry from the U.S. Naval Observatory in Flagstaff, Catalina Sky Survey, and La Palma surveys (IAU codes 689, 703, 950) in the lightcurve inversion method to determine asteroid convex models and their rotational states. We also extended a simple dynamical model for the spin evolution of asteroids used in our previous paper. We present 119 new asteroid models derived from combined dense and sparse-in-time photometry. We discuss the reliability of asteroid shape models derived only from Catalina Sky Survey data (IAU code 703) and present 20 such models. By using different values for a scaling parameter cYORP (corresponds to the magnitude of the YORP momentum) in the dynamical model for the spin evolution and by comparing synthetics and observed pole-latitude distributions, we were able to constrain the typical values of the cYORP parameter as between 0.05 and 0.6.

Dates et versions

hal-00794404 , version 1 (25-02-2013)

Identifiants

Citer

Josef Hanuš, J. Ďurech, M. Brož, A. Marciniak, B. D. Warner, et al.. Asteroids' physical models from combined dense and sparse photometry and scaling of the YORP effect by the observed obliquity distribution. Astronomy and Astrophysics - A&A, 2013, 551 (A67), 16 p. ⟨10.1051/0004-6361/201220701⟩. ⟨hal-00794404⟩
608 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More