Instabilities of coupled density fronts and their nonlinear evolution in the two-layer rotating shallow-water model: influence of the lower layer and of the topography - Archive ouverte HAL Access content directly
Journal Articles Journal of Fluid Mechanics Year : 2013

Instabilities of coupled density fronts and their nonlinear evolution in the two-layer rotating shallow-water model: influence of the lower layer and of the topography

(1) , (1, 2)
1
2

Abstract

We undertake a detailed analysis of linear stability of geostrophically balanced double density fronts in the framework of the two-layer rotating shallow-water model on the f-plane with topography, the latter being represented by an escarpment beneath the fronts. We use the pseudospectral collocation method to identify and quantify different kinds of instabilities resulting from phase locking and resonances of frontal, Rossby, Poincare and topographic waves. A swap in the leading long-wave instability from the classical barotropic form, resulting from the resonance of two frontal waves, to a baroclinic form, resulting from the resonance of Rossby and frontal waves, takes place with decreasing depth of the lower layer. Nonlinear development and saturation of these instabilities, and of an instability of topographic origin, resulting from the resonance of frontal and topographic waves, are studied and compared with the help of a new-generation well-balanced finite-volume code for multilayer rotating shallow-water equations. The results of the saturation for different instabilities are shown to produce very different secondary coherent structures. The influence of the topography on these processes is highlighted.
Not file

Dates and versions

hal-01098637 , version 1 (27-12-2014)

Identifiers

Cite

Bruno Ribstein, Vladimir Zeitlin. Instabilities of coupled density fronts and their nonlinear evolution in the two-layer rotating shallow-water model: influence of the lower layer and of the topography. Journal of Fluid Mechanics, 2013, 716 (February), pp.528-565. ⟨10.1017/jfm.2012.556⟩. ⟨hal-01098637⟩
97 View
0 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More