Biodiesel from microalgae – Life cycle assessment and recommendations for potential improvements - Université Pierre et Marie Curie Accéder directement au contenu
Article Dans Une Revue Renewable Energy Année : 2014

Biodiesel from microalgae – Life cycle assessment and recommendations for potential improvements

Résumé

Microalgae are considered as one of the potential major source of biofuel for the future. However, their environmental benefit is still unclear and many scientific publications provide contradictory results. Here we perform the Life Cycle Assessment of the production and combustion of 1 MJ of algal methylester. The system under consideration uses standard open raceways under greenhouses. Lipid extraction and transesterification are carried out on a humid paste produced by centrifugation. Our environmental and energetic analysis shows that improving the energy balance is clearly the key priority to make microalgal cultivation sustainable and to reduce its greenhouse gas (GHG) emissions. To achieve significant reduction of the GHG emissions, most of the studies of the literature focus on technological breakthroughs, especially at the production step. However, since a large fraction of environmental impacts and especially GHG emissions do not occur directly at the production facility but stem from the production of the electricity required for producing, harvesting and transforming algae, it seems relevant to question the source of electricity as well as algae production technology. We consider a scenario where up to 45% of electricity was produced by a local renewable source and then we compare it to the improvements resulting from technological breakthroughs resulting in higher microalgal productivity or biomass concentration. It turns out that increasing the yield only drastically reduces the climate change for low starting productivity. The climate change is always significantly reduced by the use of local renewable electricity. It is therefore wiser to increase biomass productivity to easily achievable values (10–15 gm−2 d−1), and then radically change improvements pathways by considering the composition of the electricity mix used for example. At least, it must be underlined that the introduction of renewable electricity also affect energetic efficiency, leading to a positive cumulative energy balance due to better energetic ratios.
Fichier non déposé

Dates et versions

hal-01123253 , version 1 (04-03-2015)

Identifiants

Citer

Pierre Collet, Laurent Lardon, Arnaud Helias, Stéphanie Bricout, Isabelle Lombaert-Valot, et al.. Biodiesel from microalgae – Life cycle assessment and recommendations for potential improvements. Renewable Energy, 2014, 71, pp.525-533. ⟨10.1016/j.renene.2014.06.009⟩. ⟨hal-01123253⟩
271 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More