The challenge of mapping the human connectome based on diffusion tractography - Université Pierre et Marie Curie Accéder directement au contenu
Article Dans Une Revue Nature Communications Année : 2017

The challenge of mapping the human connectome based on diffusion tractography

Klaus H Maier-Hein (1) , Peter F. Neher (1) , Christophe Houde (2) , Marc-Alexandre Côté (2) , Eleftherios Garyfallidis (2) , Jidan Zhong (3) , Maxime Chamberland (2) , Fang-Chen Yeh (4) , Ying-Chia Lin (5) , Qing Ji (6) , Wilburn E. Reddick (6) , John O. Glass (6) , David Qixiang Chen (7) , Yuanjing Feng (8) , Chengfeng Gao (8) , Ye Wu (8) , Jieyan Ma (9) , H. Renjie (9) , Qiang Li (9) , Carl-Fredrik Westin (10) , Samuel Deslauriers-Gauthier (2) , J. Omar Ocegueda González (11) , Michael Paquette (2) , Samuel St-Jean (2) , Gabriel Girard (12) , François Rheault (2) , Jasmeen Sidhu (2) , Chantal M. W. Tax (13) , Fenghua Guo (13) , Hamed Y. Mesri (13) , Szabolcs Dávid (13) , Martijn Froeling (14) , Anneriet M. Heemskerk (13) , Alexander Leemans (13) , Arnaud Boré (15) , Basile Pinsard (15, 16) , Christophe Bedetti (15, 17) , Matthieu Desrosiers (15) , Bram Brambati (15) , Julien Doyon (15) , Alessia Sarica (2) , Roberta Vasta (18) , Antonio Cerasa (18) , Aldo Quattrone (18) , Jason Yeatman (19) , Ali R. Khan (20) , Wes Hodges (21) , Simon Alexander (21) , David Romascano (22) , Muhamed Barakovic (22) , Anna Auría (22) , Oscar Esteban (23) , Alia Lemkaddem (23) , Jean-Philippe Thiran (22) , H. Ertan Cetingul (24) , Benjamin L. Odry (24) , Boris Mailhé (24) , Mariappan S. Nadar (24) , Fabrizio M Pizzagalli (25) , Gautam Prasad (25) , Julio E. Villalon-Reina (25) , Justin Galvis (25) , Paul M. Thompson (25) , Francisco de Santiago Requejo (26) , Pedro Luque Laguna (26) , Luis Miguel Lacerda (26) , Rachel Barrett (26) , Flavio Dell’acqua (26) , Marco Catani (26) , Laurent Petit (27) , Emmanuel Caruyer (28) , Alessandro Daducci (21, 29) , Tim Dyrby (30, 31) , Tim Holland-Letz (1) , Claus C. Hilgetag (32) , Bram Stieltjes (33) , Maxime Descoteaux (2)
1 DKFZ - German Cancer Research Center - Deutsches Krebsforschungszentrum [Heidelberg]
2 SCIL - Sherbrooke Connectivity Imaging Lab [Sherbrooke]
3 Krembil Research Institute
4 University of Pittsburgh School of Medicine
5 IMT Institute for Advanced Studies [Lucca]
6 Department of Diagnostic Imaging [Memphis]
7 Institute of Medical Science [Toronto]
8 Zhejiang University of Technology
9 Shanghai United Imaging Healthcare Co Ltd
10 Laboratory of Mathematics in Imaging [Boston]
11 CIMAT - Centro de Investigación en Matemáticas
12 ATHENA - Computational Imaging of the Central Nervous System
13 ISI - Image sciences institute - University of Utrecht
14 University Medical Center [Utrecht]
15 CRIUGM - Centre de recherche de l'Institut universitaire de gériatrie de Montreal
16 LIB - Laboratoire d'Imagerie Biomédicale [Paris]
17 Center for advanced research in sleep medicine, Montreal
18 Institute of Bioimaging and Molecular Physiology [Germaneto]
19 Department of Speech and Hearing Sciences [Washington]
20 Schulich School of Medicine and Dentistry
21 Synaptive Medical Inc
22 LTS5 - Signal Processing Laboratory [Lausanne]
23 Biomedical Image Technologies Lab, ETSI Telecomunicación
24 Siemens Healthcare
25 Keck School of Medicine [Los Angeles]
26 Institute of Psychiatry, Psychology & Neuroscience, King's College London
27 GIN - UMR 5296 - Groupe d'Imagerie Neurofonctionnelle
28 VisAGeS - Vision, Action et Gestion d'informations en Santé
29 CHUV - Centre Hospitalier Universitaire Vaudois = Lausanne University Hospital [Lausanne]
30 DRCMR - Danish Research Centre for Magnetic Resonance
31 DTU Compute - Department of Applied Mathematics and Computer Science [Lyngby]
32 UKE - Universitaetsklinikum Hamburg-Eppendorf = University Medical Center Hamburg-Eppendorf [Hamburg]
33 University Hospital Basel [Basel]
Martijn Froeling
Wes Hodges
  • Fonction : Auteur
Boris Mailhé
  • Fonction : Auteur
  • PersonId : 856985
Laurent Petit
Bram Stieltjes
  • Fonction : Auteur
  • PersonId : 912655

Résumé

Tractography based on non-invasive diffusion imaging is central to the study of human brain connectivity. To date, the approach has not been systematically validated in ground truth studies. Based on a simulated human brain data set with ground truth tracts, we organized an open international tractography challenge, which resulted in 96 distinct submissions from 20 research groups. Here, we report the encouraging finding that most state-of-the-art algorithms produce tractograms containing 90% of the ground truth bundles (to at least some extent). However, the same tractograms contain many more invalid than valid bundles, and half of these invalid bundles occur systematically across research groups. Taken together, our results demonstrate and confirm fundamental ambiguities inherent in tract reconstruction based on orientation information alone, which need to be considered when interpreting tractography and connectivity results. Our approach provides a novel framework for estimating reliability of tractography and encourages innovation to address its current limitations.
Fichier principal
Vignette du fichier
Maier-Hein_et_al-2017-Nature_Communications.pdf (3.62 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01631578 , version 1 (09-11-2017)

Identifiants

Citer

Klaus H Maier-Hein, Peter F. Neher, Christophe Houde, Marc-Alexandre Côté, Eleftherios Garyfallidis, et al.. The challenge of mapping the human connectome based on diffusion tractography. Nature Communications, 2017, 8 (1), ⟨10.1038/s41467-017-01285-x⟩. ⟨hal-01631578⟩
836 Consultations
342 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More