A synthetic glycosaminoglycan mimetic (RGTA) modifies natural glycosaminoglycan species during myogenesis - Archive ouverte HAL Access content directly
Journal Articles Journal of Cell Science Year : 2004

A synthetic glycosaminoglycan mimetic (RGTA) modifies natural glycosaminoglycan species during myogenesis

(1) , (1) , (2) , (3) , (1) , (1) , (4) , (5) , (6) , (5) , (1) , (1) , (1) , (1) , (1) , (7) , (8) , (9) , (1) , (1) , (10) , (11) , (1)
1
2
3
4
5
6
7
8
9
10
11
Emmanuel Petit
  • Function : Author
  • PersonId : 1151920
  • IdRef : 157819418
Denis Barritault
  • Function : Author

Abstract

Crucial events in myogenesis rely on the highly regulated spatiotemporal distribution of cell surface heparan sulfate proteoglycans to which are associated growth factors, thus creating a specific microenvironment around muscle cells. Most growth factors involved in control of myoblast growth and differentiation are stored in the extracellular matrix through interaction with specific sequences of glycosaminoglycan oligosaccharides, mainly heparan sulfate (HS). Different HS subspecies revealed by specific antibodies, have been shown to provide spatiotemporal regulation during muscle development. We have previously shown that glycosaminoglycan (GAG) mimetics called RGTA (ReGeneraTing Agent), stimulate muscle precursor cell growth and differentiation. These data suggest an important role of GAGs during myogenesis; however, little is yet known about the different species of GAGs synthesized during myogenesis and their metabolic regulation. We therefore quantified GAGs during myogenesis of C2.7 cells and show that the composition of GAG species was modified during myogenic differentiation. In particular, HS levels were increased during this process. In addition, the GAG mimetic RGTA, which stimulated both growth and differentiation of C2.7 cells, increased the total amount of GAG produced by these cells without significantly altering their rate of sulfation. RGTA treatment further enhanced HS levels and changed its sub-species composition. Although mRNA levels of the enzymes involved in HS biosynthesis were almost unchanged during myogenic differentiation, heparanase mRNA levels decreased. RGTA did not markedly alter these levels. Here we show that the effects of RGTA on myoblast growth and differentiation are in part mediated through an alteration of GAG species and provide an important insight into the role of these molecules in normal or pathologic myogenic processes.

Dates and versions

hal-01756679 , version 1 (02-04-2018)

Identifiers

Cite

Christophe Morin, Mohand-Ouidir Ouidja, Emmanuel Petit, Marie-Emmanuelle Kerros, Yasunori Ikeda, et al.. A synthetic glycosaminoglycan mimetic (RGTA) modifies natural glycosaminoglycan species during myogenesis. Journal of Cell Science, 2004, 118, pp.253 - 264. ⟨10.1242/jcs.01607⟩. ⟨hal-01756679⟩
147 View
0 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More