Magnetic Fe 2 O 3 −Polystyrene/PPy Core/Shell Particles: Bioreactivity and Self-Assembly - Université Pierre et Marie Curie Accéder directement au contenu
Article Dans Une Revue Langmuir Année : 2007

Magnetic Fe 2 O 3 −Polystyrene/PPy Core/Shell Particles: Bioreactivity and Self-Assembly

Résumé

This paper describes the synthesis of new magnetic, reactive polystyrene/polypyrrole core/shell latex particles. The core consists of a polystyrene microsphere containing gamma-Fe2O3 superparamagnetic nanoparticles (PSmag), and the shell is made of reactive N-carboxylic acid-functionalized polypyrrole (PPyCOOH). These PSmag-PPyCOOH latex particles, average diameter 220 nm, were prepared by copolymerization of pyrrole (Py) and the active carboxyl-functionalized pyrrole (PyCOOH) in the presence of PSmag particles. PNVP was used as a steric stabilizer. The functionalized polypyrrole-coated PSmag particles were characterized in terms of their particle size, surface morphology, chemical composition, and electrochemical and magnetic properties using transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), cyclic voltammetry, and SQUID magnetometry. Activation of the particle surface carboxyl groups was achieved using 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC) and N-hydroxysuccinimide (NHS), which helps transform the carboxyl groups into activated ester groups (NSE). The activated particles, PSmag-PPyNSE, were further evaluated as bioadsorbents of biotin used as a model biomolecule. It was shown that biotin was immobilized at the surface of the PSmag-PPyNSE particles by forming interfacial amide groups. The assemblies of PSmag-PPyCOOH particles on glass plates were further investigated. When no magnetic field is applied, the particles assemble into 3D colloidal crystals. In contrast, under a magnetic field, one-particle-thick chains gathered in hedgehog-like architectures are obtained. Furthermore, PSmag-PPyCOOH coated ITO electrodes were shown to be electroactive and electrochemically stable, thus offering potentialities for creating novel high-specific-area materials for biosensing devices where the conducting polymer component would act as the transducer through its conductive properties.

Dates et versions

hal-02093459 , version 1 (09-04-2019)

Identifiants

Citer

Claire Mangeney, Meriem Fertani, Smain Bousalem, Ma Zhicai, Souad Ammar, et al.. Magnetic Fe 2 O 3 −Polystyrene/PPy Core/Shell Particles: Bioreactivity and Self-Assembly. Langmuir, 2007, 23 (22), pp.10940-10949. ⟨10.1021/la700492s⟩. ⟨hal-02093459⟩
147 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More