Visible and near-infrared spectrophotometry of the Deep impact ejecta of Comet 9P/Tempel 1 - Université Pierre et Marie Curie Accéder directement au contenu
Article Dans Une Revue Icarus Année : 2007

Visible and near-infrared spectrophotometry of the Deep impact ejecta of Comet 9P/Tempel 1

K.W. Hodapp
  • Fonction : Auteur
G. Aldering
  • Fonction : Auteur
K.J. Meech
  • Fonction : Auteur
A.L. Cochran
  • Fonction : Auteur
W. Chickering
  • Fonction : Auteur
Y. Copin
D.K. Lynch
  • Fonction : Auteur
R.J. Rudy
  • Fonction : Auteur
S. Mazuk
  • Fonction : Auteur
C.C. Venturini
  • Fonction : Auteur
R.C. Puetter
  • Fonction : Auteur
R.B. Perry
  • Fonction : Auteur

Résumé

We have obtained optical spectrophotometry of the evolution of Comet 9P/Tempel 1 after the impact of the Deep Impact probe, using the Supernova Integral Field Spectrograph (SNIFS) at the UH 2.2-m telescope, as well as simultaneous optical and infrared spectra using the Lick Visible-to-Near-Infrared Imaging Spectrograph (VNIRIS). The spatial distribution and temporal evolution of the “violet band” CN (0–0) emission and of the 630 nm [OI] emission was studied. We found that CN emission centered on the nucleus increased in the 2 h after impact, but that this CN emission was delayed compared to the light curve of dust-scattered sunlight. The CN emission also expanded faster than the cloud of scattering dust. The emission of [OI] at 630 nm rose similarly to the scattered light, but then remained nearly constant for several hours after impact. On the day following the impact, both CN and [OI] emission concentrated on the comet nucleus had returned nearly to pre-impact levels. We have also searched for differences in the scattering properties of the dust ejected by the impact compared to the dust released under normal conditions. Compared to the pre-impact state of the comet, we find evidence that the color of the comet was slightly bluer during the post-impact rise in brightness. Long after the impact, in the following nights, the comet colors returned to their pre-impact values. This can be explained by postulating a change to a smaller particle size distribution in the ejecta cloud, in agreement with the findings from mid-infrared observations, or by postulating a large fraction of clean ice particles, or by a combination of these two.

Dates et versions

in2p3-00347475 , version 1 (16-12-2008)

Identifiants

Citer

K.W. Hodapp, G. Aldering, K.J. Meech, A.L. Cochran, P. Antilogus, et al.. Visible and near-infrared spectrophotometry of the Deep impact ejecta of Comet 9P/Tempel 1. Icarus, 2007, 191, pp.389-402. ⟨10.1016/j.icarus.2006.09.030⟩. ⟨in2p3-00347475⟩
18 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More