Application of remote sensing and geographical information system for the study of mass movements in Lebanon - Archive ouverte HAL Access content directly
Theses Year : 2007

Application of remote sensing and geographical information system for the study of mass movements in Lebanon

Application de la télédétection et des systèmes d'informations géographiques à l'etude des mouvements de terrain au Liban

Chadi Abdallah
  • Function : Author
  • PersonId : 832570


Among the various natural hazards, mass movements (MM) are probably the most damaging to the natural and human environment in the Mediterranean countries, including Lebanon which represents a good case study of mountainous landscape. Although affecting vast areas in the country, the phenomenon was not studied at regional scale, and related maps are still lacking. Therefore, this research deals with the use of remote sensing and geographic information system (GIS) techniques in studying MM in Lebanon. In this context, the first part reviews existing knowledge on the topics of mass movements (MM) specifically in the Mediterranean region, and defines research gaps. It exposes the diverse types of MM, their magnitudes, the causative agents and their bad consequences. It clarifies confusions related to MM-terms (hazard, susceptibility, risk, etc.), and compares the efficiencies of the most used methods for MM susceptibility/hazard zonation. It includes also a statement on remote sensing and GIS benefits and constraints in mass movement studies, pointing out possible ways of research. The second part is dedicated to the detailed description of the study area "the Mediteranean slopes of central to north Lebanon" within Lebanon. Physical/morphodynamic and socioeconomic characteristics of the area are exposed, as well as the natural hazards, MM events, their socio-economic impacts and mitigation measures. All previous studies about MM hazard in Lebanon are reviewed. The studied area, extending from the Mediterranean coast to around 3000 m elevation, covers ~36% of the total area of Lebanon. It represents the geoenvironmental diversity of this country in terms of geology, soil, hydrography, land cover and climate. It is characterized by problematic human activities (e.g., chaotic urban expansion, artificial recharge of groundwater, overgrazing, forest fire) enhancing environmental decline and inducing MM, with minimal government control. The third part compares the applicability of different satellite sensors (Landsat TM, IRS, SPOT4) and preferred image processing techniques (False Color Composite "FCC", Pansharpen, Principal component analysis "PCA", Anaglyph) for the mapping of MM recognized as landslides, rock/debris falls and earth flows. Results from the imagery have been validated by field surveys and analysis of IKONOS imagery (1 m) acquired in some locations witnessing major MM during long periods. Then, levels of accuracies of detected MM from satellite imageries were plotted. This study has demonstrated that the anaglyph produced from the two panchromatic stereo-pairs SPOT4 images remains the most effective tool setting the needed 3-D properties for visual interpretation and showing maximum accuracy of 69%. The PCA pan-sharpen Landsat TM-IRS image gave better results in detecting MM, among other processing techniques, with maximum accuracy level of 62%. The errors in interpretation fluctuate not only according to the processing technique, but also due to the difference in MM type. They are minimal once 3D anaglyph SPOT4 is considered, varying between 31% (landslides), 36% (rock and debris falls) and reaching 46% in the case of earth and debris flows. The fourth part explores relationships between MM occurrence and different factor terrain parameters. Parameters expressed by: 1- preconditioning factors, like: elevation, slope gradient, slope aspect, slope curvature, lithology, proximity to fault line, karst type, distance to quarries, soil type, distance to drainage line, distance to water sources, land cover/use, and proximity to roads, and 2- triggering MM factors, like: rainfall quantity, seismic events,floods and forest fires, were correlated with MM using GIS-approaches. This study indicates, depending on bivariate remote sensing and GIS statistical correlations (Kendall Tau-b correlation), that lithology is the most influencing on MM occurrence, having the highest correlation with other parameters (i.e. 7 times correlated at 1% level of significance and 3 times at 5%). It also shows that statistical correlations to mass movements exist best between parameters at the following decreasing order of importance: soil type/distance to water sources (acting similarly on MM occurrence), karst/distance to quarries/land cover-use, proximity to faults, slope gradient/proximity to roads/floods, seismic events, elevation/slope aspect/forest fires. These correlations were verified and checked through field observations and explained using univariate statistical correlations. Therefore, they could be extrapolated to other Mediterranean countries having similar geoenvironmental conditions. The fifth part proposes a mathematical decision making method - Valuing Analytical Bi- Univariate (VABU) that considers two-level weights for mapping MM susceptibility/hazard (1:50,000 cartographic scale) within the study area. The reliability of this method is examined through field surveys and depending on a GIS comparison with other statistical methods - Valuing accumulation Area (VAA) (depending on one weight level) and Information Value (InfoVal) (requiring detailed measurements of MM areas). Three susceptibility maps were derived using preconditioning parameters, while hazard maps were produced from triggering ones. The coincidence values of overlapping susceptibility maps were found to be equal to 47.5% (VABU/VAA), 54% (VABU/InfoVal) and 38% (VAA/InfoVal). The agreement between hazard maps showed closer values than susceptibility ones, oscillating between 36.5% (VAA/InfoVal), 39% (VABU/VAA), and 44 % (VABU/InfoVal). Field verification indicates that the total precision of the produced susceptibility maps ranges from 52.5% (VAA method), 67.5% (InfoVal method) and 77.5% (VABU method). This demonstrates the efficiency of our method, which consequently can be adopted for predictive mapping of MM susceptibility/hazard in other areas in Lebanon and may be easily extrapolated using the functional capacities of GIS. The sixth part predicts the geographic distribution and volume of block falls (m3) across the study area using GIS decision-tree modelling. Such mapping was unavailable in Lebanon, but also in many other countries putting effort on landslide research rather than other types of MM. Several decision-tree models were developed using (1) all terrain parameters, (2) topographic parameters only, (3) geologic parameters only, and adopting various processing techniques (pruned and unpruned trees). The best regression tree model combined all parameters and explained 80% of the variability in field blocks falls' measurements. The unpruned model built using four geological parameters (lithology, soil type, proximity to fault line, and karst type) seems also interesting, classifying 68% of block falls and referring to a small amount of input data (4 parameters). The produced predictive quantitative block falls' map at 1:50,000 appears extremely useful for decision-making, helping adoption of mitigation measures to reduce the occurrence of harmful block falls. The seventh part focuses on monitoring MM activity through integrating space borne radar data and Global Positioning System (GPS) techniques. ERS radar imageries were processed using InSAR and permanent scatters techniques. The analysis showed difficulties in detecting ground deformations due to MM. Nevertheless, the analysis is still in its preliminary stage and future planned work will take into consideration other manipulating procedures for detecting the displacements. On the other hand, a GPS installation in Hammana area; one of the Lebanese villages lying in a major landslide, was conducted. Two campaigns were raised, but results are still lacking since there is not enough data accumulation. More observations are still needed to build up a comprehensive picture on the direction and velocity of the movement.
Parmi les aléas naturels, les mouvements de terrain (MT) sont probablement les plus nuisibles à l'environnement naturel et humain, notamment dans les pays méditerranéens, incluant le Liban qui représente un bon cas d'étude de région montagneuse. Ce phénomène n'a pas été étudié à l'échelle régionale bien qu'il affecte de vastes zones dans ce pays, et les cartes d'aléa manquent encore. La recherche présentée ici est consacrée à l'utilisation des techniques de télédétection et des systèmes d'informations géographiques (SIG), pour l'étude des MT au Liban. La première partie passe en revue les connaissances existantes sur le thème des mouvements de terrain (MT), plus spécifiquement dans la région méditerranéenne, et définit les lacunes de recherche. Elle expose les divers types existants de MT, leurs magnitudes, les agents causatifs, et leurs effets. Elle clarifie la terminologie utilisée pour les MT (aléa, susceptibilité, risque, etc.), et compare les méthodes les plus utilisées pour la cartographie de l'aléa/susceptibilité aux MT. Elle présente aussi un état des avantages et problèmes de la télédétection et du SIG dans les études de mouvements de terrain, en insistant sur les voies possibles de recherche. La deuxième partie est consacrée à la description détaillée de la région d'étude qui couvre les versants méditerranéens du nord du Liban central. Les caractéristiques physiques/morphodynamiques et socio-économiques de cette région sont exposées, ainsi que les aléas naturels, les événements de MT, les impacts socio-économiques et les mesures de conservation. Toutes les études sur l'aléa MT au Liban sont revisitées. La région d'étude, s'étendant de la côte méditerranéenne jusqu'à 3000 m d'altitude, couvre à peu près 36 % de la superficie totale du Liban. Elle est représentative de la diversité géo-environnementale de ce pays en termes de géologie, sol, hydrographie, occupation du sol et climat. Elle se caractérise par des activités humaines problématiques (par exemple une expansion urbaine chaotique, la recharge artificielle des eaux souterraines, un surpâturage, des incendies de forêt), accroissant la dégradation de l'environnement et induisant les MT, avec un contrôle gouvernemental minime. La troisième compare l'efficacité de différents capteurs satellitaires à résolutions variées (Landsat TM, IRS, SPOT4) et diverses techniques de traitement d'image (composition colorée, fusion, analyse en composantes principales ACP, vision stéréoscopique) pour la détection visuelle des mouvements de terrain classés en glissements, éboulements de blocs rocheux et de débris, et coulées de boue. Les résultats ont été validés sur le terrain et en analysant des images IKONOS (1 m) acquises en certaines localités menacées par des MT sur de longues périodes. Ensuite, les niveaux de précision de la détection des MT à partir des images satellitaires ont été calculés. Cette étude a montré que l'anaglyphe produit à partir des images panchromatiques stéréo SPOT4 reste l'outil le plus efficace grâce aux caractéristiques 3D jouant un rôle essentiel dans l'interprétation visuelle et montrant un niveau de précision (pourcentage des MT détectés et vérifiés sur le terrain) maximal de 69 %. De plus, l'image de fusion Landsat TM-IRS, calculée par ACP, fournit des résultats de détection des MT meilleurs que les autres techniques, avec un niveau de précision de 62 %. Les erreurs d'interprétation fluctuent non seulement en fonction de la technique de traitement utilisée, mais aussi en fonction des types de MT. Elles sont minimes quand l'anaglyphe (3D) SPOT4 est pris en considération, variant de 31 % (glissements), 36 % (éboulements de blocs rocheux et de débris) à 46 % dans le cas des coulées de boue. La quatrième partie explore les relations entre l'occurrence de MT et les paramètres du terrain. Ces paramètres sont: 1- les facteurs de prédisposition, comme l'altitude, la pente en gradient, l'aspect de pente, la courbure de pente, la lithologie, la proximité aux failles, le type de karst, la distance aux carrières, le type de sol, la distance aux réseaux de drainage, la distance aux sources, l'occupation/utilisation du sol et la proximité aux routes, et 2- les facteurs déclenchants, comme la quantité de pluies, les événements sismiques, les inondations et les incendies de forêt, qui ont été corrélés avec les MT en utilisant les approches SIG. Cette étude montre, en se basant sur les corrélations statistiques bi-variées satellitaires et SIG (corrélation Kendal Tau-b), que la lithologie est ce qui influence le plus l'occurrence des MT, puisqu'elle a la corrélation la plus élevée avec les autres paramètres (7 fois corrélée à un niveau de signification de 1 %, et 3 fois à 5 %). Elle montre aussi que les corrélations statistiques entre ces paramètres et les mouvements de terrain existent suivant l'ordre d'importance décroissant suivant : type de sol/distance aux sources (agissant de manière similaire sur l'occurrence des MT), karst/distance aux carrières/occupation/utilisation du sol, proximité aux failles, gradient de pente/proximité aux routes/inondations, événements sismiques, altitude/aspect de pente/incendies de forêt. Ces corrélations sont vérifiées sur le terrain et expliquées en utilisant des corrélations statistiques uni-variées. Par conséquent, elles peuvent être extrapolées à d'autres pays méditerranéens caractérisés par des conditions géoenvironnementales similaires. La cinquième partie propose une méthode mathématique décisionnelle (méthode analytique bi-univariée d'évaluation ou "Valuing Analytical Bi-Univariate (VABU)") qui considère deux niveaux de pondération pour la cartographie de l'aléa/susceptibilité des MT (échelle 1/50000) dans la région d'étude. La fiabilité de cette méthode est examinée sur le terrain et en la comparant avec d'autres méthodes statistiques - Valuing accumulation Area (VAA) (un seul niveau d'évaluation) and Information Value (InfoVal) (nécessitant des mesures détaillées des MT). Trois cartes de susceptibilité sont dérivées en utilisant les facteurs conditionnant l'occurrence des MT, tandis que les cartes d'aléa sont produites à partir des facteurs déclenchants. Les valeurs de coïncidence de superposition des cartes de susceptibilité sont de 47,5 % (VABU/VAA), 54 % (VABU/InfoVal) et 38% (VAA/InfoVal), respectivement. L'accord entre les cartes d'aléas montre des valeurs proches de celles des cartes de susceptibilité, variant entre 36,5 % (VAA/InfoVal), 39 % (VABU/VAA), et 44 % (VABU/InfoVal). La validation sur le terrain indique que la précision totale des cartes de susceptibilité produites varie entre 52,5% (méthode VAA), 67,5% (méthode InfoVal) et 77,5% (méthode VABU). Cela démontre l'efficacité de notre méthode qui peut être adoptée pour une cartographie prédictive de l'aléa et de la susceptibilité des MT dans d'autres régions au Liban, et peut être aussi aisément extrapolée en utilisant les capacités fonctionnelles du SIG. La sixième partie prédit la distribution géographique et le volume des blocs rocheux (m3) dans la région d'étude en utilisant la modélisation suivant un arbre décisionnel. Une telle cartographie est indisponible au Liban, mais aussi dans d'autres pays qui portent plutôt leur effort sur la recherche des glissements plutôt que les autres types de MT. Plusieurs modèles d'arbres décisionnels ont été développés en utilisant, (1) tous les paramètres de terrain, (2) les paramètres topographiques uniquement, (3) les paramètres géologiques, et en adoptant plusieurs techniques de traitement. Le meilleur arbre de régression combine tous les paramètres et explique 80 % de la variabilité dans les mesures des blocs rocheux sur le terrain. Le modèle construit en utilisant les quatre paramètres géologiques (lithologie, type de sol, proximité aux failles et type de karst) parait aussi intéressant car il classe 68 % des blocs rocheux tout en se référant à un petit nombre de données d'entrée (4 paramètres). La carte produite de 'prédiction quantitative des blocs rocheux' à l'échelle du 1/50 000 apparait extrêmement utile pour la décision, aidant à l'adoption des mesures de conservation afin de réduire l'occurrence de movements nuisibles de blocs rocheux. La septième partie s'intéresse à la surveillance de l'activité des MT à travers l'intégration des données spatiales radar et des techniques GPS (Système de positionnement global). Les données radar ERS sont traitées en utilisant les techniques InSAR et des réflecteurs permanents. Cette analyse montre des difficultés pour la détection des MT. Cependant, elle est jusqu'à présent préliminaire, et un plan de travail futur prendra en considération d'autres traitements pour la détection des déplacements. D'un autre côté, une installation GPS a été effectuée dans la région de Hammana, un village libanais menacé par un grand glissement. Deux campagnes ont été rassemblées, mais les résultats manquent encore puisqu'il n'y a pas des données accumulées suffisantes. Plus d'observations sont nécessaires afin de construire une représentation compréhensive de la direction et de la vitesse du mouvement.
Fichier principal
Vignette du fichier
PhD_thesis.pdf (15.4 Mo) Télécharger le fichier

Dates and versions

tel-00800759 , version 1 (15-03-2013)


  • HAL Id : tel-00800759 , version 1


Chadi Abdallah. Application of remote sensing and geographical information system for the study of mass movements in Lebanon. Tectonics. Université Pierre et Marie Curie - Paris VI, 2007. English. ⟨NNT : 2007PA066085⟩. ⟨tel-00800759⟩
592 View
2722 Download


Gmail Facebook Twitter LinkedIn More