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ABSTRACT
The paper presents a numerical implementation of the ZM

model for shape memory alloys that fully accounts for

non-proportional loading and its influence on martensite

reorientation and phase transformation. Derivation of the

time-discrete implicit integration algorithm is provided.

The algorithm is used for finite element simulations us-

ing Abaqus, in which the model is implemented by means

of a user material subroutine. The simulations are shown

to agree with experimental and numerical simulation data

taken from the literature.

1. INTRODUCTION
Shape memory alloys (SMAs) are capable of under-

going severe inelastic deformation that can be recovered

by heating. Alternatively, beyond a certain temperature,

the recovery of inelastic deformation can be accomplished

by removal of the load to which the SMA is subjected.

Such behavior is known as “superelasticity” because it

holds phenomenological analogy with conventional elas-

ticity, even though the underlying process is dissipative

and gives rise to a hysteresis loop in the SMA stress-strain

curve.

The present work focuses on proper numerical inte-

gration of the Zaki-Moumni model for SMAs [8, 17, 18]

subjected to complex multiaxial loading in the superelas-

tic range. The inelastic deformation of the material is ac-

complished in this case by means of two distinct physi-

cal processes: a solid-solid phase transformation from a

single-variant parent phase called austenite to a multivari-

ant product phase called martensite, and a reorientation

of martensite by the formation of preferred variants at the

expense of others as a result of changes in the magnitude

and orientation of the stress experienced by the marten-

site. Other aspects of SMA behavior such as tensile-

compressive asymmetry [14, 20], SMA dynamics [10],

slip plasticity [19] and thermomechanical coupling [5] in-

cluding cyclic effects [6,7,9] are not considered here. The

time integration of the Zaki-Moumni model for marten-

sitic SMAs is addressed in [15, 16].

In the literature, several models for SMAs were pro-

posed that account for multiaxial loading to various de-

grees of success. [4] developed a model for SMAs that was

validated against experimental data obtained earlier by the

same research group for samples subjected to nonpropor-

tional biaxial loading. [11] derived a phenomenological

model where the state equations are derived from thermo-



dynamic potentials in accordance with the principles of

thermodynamics. The model was validated against exper-

imental data obtained by [12]. Other models were also

presented in [13], [2], and more recently in [1]. The latter

uses the Fischer-Burgmeister functions to substitute the

Kuhn-Tucker optimality conditions with nonlinear equal-

ities in order to avoid the need for iterative detection of

active loading surfaces.

Simulation results using the ZM model for SMAs are

compared in this paper to some of those reported in the

above references. The model is further validated using

experimental data taken from the literature.

2. ANALYTICAL DERIVATIONS
Only key constitutive relations are listed here for con-

ciseness. For details on the analytical derivation proce-

dure for the model the reader is referred to [17, 18]. The

following state variables are considered: the volume frac-

tion of martensite z, the local inelastic strain in the marten-

site phase due to reorientation εεεori, as well as the conven-

tional total strain εεε and temperature T . Following standard

convention, tensors are represented with bold characters.

The ZM model uses the framework of generalized

standard materials in deriving the constitutive relations for

SMAs. The state equations are derived from the expres-

sion of a Helmholtz free energy density and include the

following stress-strain relation:

σσσ = KKK : (εεε− zεεεori), (1)

where σσσ is the stress tensor and KKK is the elastic stiff-

ness tensor, which may depend on the volume fraction of

martensite.

The above equation reflects that the total inelastic

strain in a reference volume element of the SMA is re-

solved into the product of the amount of martensite that

exists within that element and the amount of local inelas-

tic strain experienced by the martensite due to reorienta-

tion of the variants.

Both z and εεεori are dissipative variables for which the

evolution is governed by the loading functions F 1
z and F 2

z

for forward (ż > 0) and reverse (ż < 0) phase transforma-

tions and Fori for martensite reorientation. The loading

functions depend on σσσ, z, εεεori and T . For the purpose of

this manuscript, only isothermal processes are considered,

temperature is therefore introduced only as a parameter.

The explicit expressions for the loading functions are

the following:

F
1

z = F1
z

(

σσσ,z,εεεori
)

=
1

2

(

3

2
ElMAsss : sss+PMAtr2(σσσ)

)

−C(T )

+ sss : εεεori
− (G+b)z−a(1− z)

−

[

(α−β)z+
β

2

](

2

3
εεεori : εεεori

)

,

(2)

F
2

z = F2
z

(

σσσ,z,εεεori
)

=−
1

2

(

3

2
ElMAsss : sss+PMAtr2(σσσ)

)

+C(T )

− sss : εεεori +(G−b)z−a(1− z)

+

[

(α−β)z+
β

2

](

2

3
εεεori : εεεori

)

,

(3)

Fori = Fori

(

σσσ,z,εεεori
)

= Xvm − zY (4)

with

XXX = sss−
2

3ε2
0

(

sss : εεεori
)

εεεori
, (5)

where sss is the stress deviator, tr(σσσ) is the trace of the stress

tensor, Xvm is the von Mises equivalent of the thermody-

namic force XXX , C(T ) is a linear function of temperature

and ElMA, PMA, α, β, a, b, G are material parameters. The

evolution of εεεori is governed by the normality rule

ε̇εεori = η
∂Fori

∂XXX
=

3

2
η

XXX

Xvm

= ηNNN (6)

where η is an inelastic multiplier and NNN = 3
2

XXX
Xvm

is the di-

rection of the orientation strain rate ε̇εεori in strain space.

The inelastic multiplier η and the rate of phase transfor-

mation ż are governed by standarrd Kuhn-Tucker condi-

tions.

3. ALGORITHMIC SETUP
The problem to be solved is that of a SMA structure

subjected to arbitrary mechanical loading over a time in-

terval [0,T ]. Following standard incremental solution pro-

cedure, the time interval is discretized into N subintervals.

Starting from a well-defined initial state, the time-discrete

incremental problem consists in determining the values of

the state variables everywhere in the structure for every

load increment n ∈ 1,N where n = 0 corresponds to the

initial state. Most finite element analysis software use a

strain-controlled approach in which an increment of strain

is first computed to satisfy the global equilibrium of the

structure for a given load increment, the local constitu-

tive equations are then used to compute the corresponding

increments of stress and internal state variables. Local

consistency with the constitutive equations is commonly

enforced using a Newton-Raphson algorithm, which re-

quires the derivation of a so-called Material Jacobian ma-

trix that represents the rate of change of the increment of

stress in terms of the increment of strain.

Assuming strain-controlled time-integration and us-

ing the symbol ∆ to indicate time-discrete increments, the

time-discrete equations for the SMA model used here are

written as follows:



1. Elastic predictor:

Set k = 0, (7)

εεε
(k)
n+1 = εεεn +∆εεε (8)

z
(k)
n+1 = zn (9)

εεε
ori(k)
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(11)

2. Consistency conditions:

(a) Loading functions

F
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z = F1
z
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σσσ(k)
,z(k),εεεori(k)

)

(12)
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F
(k)

ori = Fori

(

σσσ(k)
,z(k),εεεori(k)

)

(14)

(b) Active loading set

If z(k) < 1 and F
1(k)

z > 0 then forward

phase change,

If z(k) > 0 and F
2(k)

z > 0 then reverse phase

change,

If F
(k)

ori > 0 then martensite reorientation.

(c) Increments of internal variables

If forward phase change and no marten-

site reorientation then solve F
1(k+1)

z = 0

for ∆z(k+1), ∆η(k+1) = 0,

If reverse phase change and no marten-

site reorientation, solve F
2(k+1)

z = 0 for

∆z(k+1), ∆η(k+1) = 0,

If martensite reorientation and no phase

transformation then solve F
(k+1)

ori = 0 for

∆η(k+1), ∆z(k+1) = 0,

If forward phase change and marten-

site reorientation then solve the system
{

F
1(k+1)

z = 0,F
(k+1)

ori = 0
}

for ∆z(k+1)

and ∆η(k+1),

If reverse phase change and marten-

site reorientation then solve the system
{

F
2(k+1)

z = 0,F
(k+1)

ori = 0
}

for ∆z(k+1)

and ∆η(k+1).

(d) Positivity of multipliers

If forward phase change and ∆z(k+1) < 0

then set ∆z(k+1) = 0, forward phase change

is inactive,

If reverse phase change and −∆z(k+1) < 0

then set ∆z(k+1) = 0, reverse phase change

is inactive,

If martensite reorientation and ∆η(k+1) < 0

then set ∆η(k+1) = 0, martensite reorienta-

tion is inactive.

(e) Consistency with intrinsic constraints

If forward phase change and zn+∆z(k+1) >

1 then ∆z(k+1) = 1− zn,

If forward phase change and zn+∆z(k+1) <

0 then ∆z(k+1) =−zn.

(f) Set k = k+1, update σσσ(k), z(k), εεεori(k), NNN(k) and

repeat steps b to e until consistency with the

loading conditions and the intrinsic constraints

on z and εεεori is achieved.

3. Internal variables and stress update

zn+1 = zn +∆z, (15)

εεεori
n+1 = εεεori

n +∆ηNNNn+1, (16)

σσσtrial
n+1,= KKKn+1 :

(

εεεn+1 − zn+1εεεori
n+1

)

. (17)

In the above procedure, the equations F = 0, where F =
F
(

σσσ,z,εεεori
)

and F is any of the loading functions, can be

solved at iteration k + 1 using a Newton-Raphson algo-

rithm such that

F
(k+1)

≈ F
(k)+F

(k)
,σσσ : ∆σσσ(k+1)

+F
(k)
,z : ∆z(k+1)+F

(k)

,εεεori : ∆εεεori(k+1)
,

(18)

where a comma used in the subscript indicates differenti-

ation with respect to the subsequent variable. Introducing

the approximate normality rule

∆εεεori(k+1)
≈ ∆η(k+1)NNN(k) (19)

where the direction tensor NNN is approximated using its

value at iteration k, the above leads to a linear algebraic

equation with two unknowns ∆z(k+1) and ∆η(k+1). A sys-

tem of two such equations is solved every time the incre-

ments of the internal variables are determined.

4. NUMERICAL SIMULATION AND VALI-
DATION

The model is used to simulate the experiment re-

ported by Bouvet et al. in [3] for a SMA tube subjected

to a combination of tension and internal pressure. The

parameters of the model are determined using the experi-

mental curve in figure 1 and the simulated curve is shown

on the same figure for comparison. The obtained param-

eters are listed in table 1. In this table, EA and EM and

Young’s moduli for austenite and martensite, ν is Pois-

son’s coefficient for the SMA, Y is the stress onset for

martensite detwinning at low temperature, ξ and κ are pa-

rameters used to define the function C(T ), and A0
f is the

austenite-finish transformation temperature at zero stress.

The loading to which the cylinder is subjected corre-

sponds to the axial and hoop stresses reported in figure 2.

The behavior of the material is reported in terms of hoop
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Fig. 1: Experimental and fitted stress-strain

curves for the experiment of Bouvet et al. in [3].

Parameter Value Parameter Value

EA 82675 MPa a 4.79 MPa

EM 35000 MPa b 5.39 MPa

ν 0.4 ε0 0.038

Y 30 MPa G 4.48 MPa

α 789.5 MPa β 3421 MPa

ξ 0.19 MPa κ 2.32 MPa

A0
f 300 K

Table 1: Parameters used for simulating the ex-
periment of Bouvet et al..

vs axial strain in figure 3 and in terms of the stress-strain

curve in the axial and hoop directions in figures 4 and 5.

The simulation results are in good agreement with the ex-

perimental data for the first, second, and fourth loading

steps. A marked deviation is observed however for the

second loading step, in which the variation in hoop strain

is significantly underestimated by the model. This may

be explained by anisotropic material behavior in the ax-

ial and hoop directions that is not accounted for by the

present model.

5. CONCLUSION
An integration procedure for a model for shape mem-

ory alloys was presented that accounts for complex non-

proportional loading cases in the superelastic range. The

numerical integration procedure for the model was pre-

sented, including the steps necessary for the detection of

active loading sets and the enforcement of intrinsic and

consistency constraints on the state variables. The ap-

proach used is analogous to classical multisurface plastic-

ity. The model was successfully used to simulate exper-

imental data taken from the literature for a SMA sample

subjected to biaxial loading.
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the simulation.
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