Genericity results for singular curves - Archive ouverte HAL Access content directly
Journal Articles Journal of Differential Geometry Year : 2006

Genericity results for singular curves

(1) , (2) , (3)
1
2
3
Yacine Chitour
Frédéric Jean

Abstract

Let $M$ be a smooth manifold and ${\cal D}_m$, $m\geq 2$, be the set of rank $m$ distributions on $M$ endowed with the Whitney $C^\infty$ topology. We show the existence of an open set $O_m$ dense in ${\cal D}_m$, so that, every nontrivial singular curve of a distribution $D$ of $O_m$ is of minimal order and of corank one. In particular, for $m\geq 3$, every distribution of $O_m$ does not admit nontrivial rigid curves. As a consequence, for generic sub-Riemannian structures of rank greater than or equal to three, there does not exist nontrivial minimizing singular curves.
Fichier principal
Vignette du fichier
CJT.pdf (263.32 Ko) Télécharger le fichier
Loading...

Dates and versions

hal-00086357 , version 1 (18-07-2006)

Identifiers

Cite

Yacine Chitour, Frédéric Jean, Emmanuel Trélat. Genericity results for singular curves. Journal of Differential Geometry, 2006, 73 (1), pp.45-73. ⟨10.4310/jdg/1146680512⟩. ⟨hal-00086357⟩
122 View
124 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More