
HAL Id: hal-00111289
https://hal.science/hal-00111289

Submitted on 8 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Evaluation of fatigue-ratcheting damage of a pressurized
elbow undergoing damage seismic inputs

Ky Dang Van, Ziad Moumni

To cite this version:
Ky Dang Van, Ziad Moumni. Evaluation of fatigue-ratcheting damage of a pressurized elbow under-
going damage seismic inputs. Nuclear Engineering and Design, 2000, 176, pp.41-50. �10.1016/S0029-
5493(99)00229-0�. �hal-00111289�

https://hal.science/hal-00111289
https://hal.archives-ouvertes.fr


Evaluation of fatigue-ratcheting damage of a pressurised
elbow undergoing damage seismic inputs

K. Dang Van a,*, Z. Moumni b
a LMS Ecole Polytechnique, CNRS,UMR 7649, 91128 Palaiseau Cedex, France b 

Laboratoire de Mécanique, ENSTA, 91760 Palaiseau Cedex, France 

We present a simplified method to calculate the plastic ratchet of elbow-shaped pipes submitted to seismic loading and an 
internal pressure. This method is simplified in the sense that the value of the ratchet is obtained without the use of finite 
element method (FEM) calculations. Here we derive a formula and use it to evaluate the fatigue-ratcheting damage of an 
elbow. This approach is applicable to complex plastic response appropriately described by non-linear kinematics hardening, 
which is more realistic for stainless steel such as 316-L

1. Introduction

Industrial structures, designed for transporta-
tion of pressurised fluids often requires high safety
levels against accidental seismic loading. For ex-
ample, in the case of nuclear structures, which
must fulfil a criterion against fracturing, the most
vulnerable components are the curved pipes be-
cause they are more flexible than straight pipes.
They suffer much more severe stresses under the
same bending moment. It is well known that this
is due to the ovaling of the curved pipe cross
section during bending. To predict their fatigue
life, under seismic loading, it is necessary to calcu-
late the local mechanical parameters that can

initiate the general collapse of a structure by
low-cycle plastic fatigue.

It is very difficult to perform direct experimen-
tation and to interpret the obtained results for
many reasons.

First, it is not easy to predict the locus of crack
initiation. The strain gages are rapidly de-bonded,
and it becomes impossible to measure local
strains. To avoid these difficulties numerical simu-
lations are performed to evaluate the strain and
stress histories within the vicinity of points of
stress concentrations. These calculations present a
number of difficulties since we are dealing with a
shell problem presenting severe geometrical (large
displacement) and material (plasticity) non-
linearities.

Boussa et al. (1996) presented an original treat-
ment of the finite bending of curved pipes of
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arbitrary cross sections. Their model has been
used to treat the previous problem (Boussa, 1992
and Boussa et al. (1994)). Nevertheless, only two
simple constitutive laws have been used: perfect
plasticity, and linear kinematics hardening law.
The first one underestimates the ratcheting rate
threshold, whereas the second is inadequate to
describe this phenomenon. In addition, the calcu-
lations are rather CPU intensive, limiting our
ability to perform the large number of simulations
necessary to derive a design rule for a code of
practice.

In this paper, we propose a simplified model
that relates the strain histories at some critical
points to structure characteristics and seismic
loading sequences. Our method is applicable to
more realistic material behaviour taking into the
account non-linear kinematics hardening. It is
known that this model is more realistic for 316-L
stainless steel.

The paper is organised as follows. In the second
section, we give an example of calculation of the
finite pure bending of a curved pipes based on
Boussa et al. (1996) model. In this formulation, it
is shown that the problem can be reduced to an
axisymmetric problem augmented with one degree
of freedom. The third section is devoted to the
simplified method. First we derive a formula that
gives the ratchet deformation in the case of per-
fect plasticity. It is then generalised for non-linear
kinematic hardening laws. In the fourth section,
we present the fatigue analysis based on the
modified Masson–Coffin equation (Coffin, 1970)
to take account of ratcheting.

2. Numerical finite elements calculation

We give in this sequel an example of calculation
of the finite pure bending of curved pipes using
Boussa-Dang Van model.

2.1. Notation

Throughout the paper, the symbols � and (�)
denotes the standard tensor products of two vec-
tors or two second-order tensors and the differen-
tiation with respect to time.

2.2. D. Boussa–Dang Van model

Boussa et al. (1996), proposed a new and gen-
eral formulation for solving by finite elements
method (FEM) the finite pure bending of a curved
pipes. In the following, the main hypotheses of
their model are first recalled. Using the virtual
work principle, the authors’ show that the prob-
lem, after discretisation by the FEM, is reduced to
an axisymmetric problem augmented by a single
degree of freedom.

2.2.1. Kinematics
In its initial configuration assumed to be stress

free, the curved pipe of interest, shown in Fig. 1
with the main notations, is supposed to be a
three-dimensional body occupying a sector V0 of
an axis symmetric body. Let S0 denote a typical
cross section, S0

sol being the structure of the pipe
itself and S0

int being the cavity formed by this
structure. In addition, we have S0

int and S0
ext pre-

senting the inner and outer skins, C0 the bend
angle of the curved pipe and R0 the radius of
curvature defined by:

Fig. 1. General view and typical cross section of the curved
pipe.
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R0=

�&
S 0

r dS0
�

�&
S 0

dS0
� (1)

Let M be the position of a typical particle with
cylindrical co-ordinates (R, U, Z) and a nor-
malised natural basis (ER, EU, EZ):

M=O+RER(U)+ZEZ (2)

Under external loads, the body deforms and a
particle with initial position M occupies the new
position m(r, u, z) with a normalised natural basis
(er, eu, ez):

m=O+rer(u)+zez (3)

The pure in plane bending of the curved pipe
can then be conveniently described with the fol-
lowing relations:

ÁÃ
Í
ÃÄ

r=r(R, Z, t)

u= (1+a(t))U

z=z(R, Z, t)

(4)

where a(t) is a scalar function of time. The kine-
matics given by Eq. (4) includes the usual assump-
tions for the in-plane bending problem. The
assumption that cross sections remain plane is
accounted for by the dependence of u on U solely,
and the assumption that all the cross sections
deform likewise in their plane is enforced by the
independence of r and z from U. Also, the as-
sumption of uniform stretching of parallels to the
axis of symmetry is the consequence of the linear-
ity between u and U. In addition, fixing a(t) to 0
in Eq. (4) yields an axisymmetric evolution. Ac-
cordingly, arbitrary values of a(t) adds only one
degree of freedom to the axisymmetric problem.

2.2.2. External loading and boundary conditions
In the sequel the Cauchy stress tensor will be

denoted by s. In its initial state, the pipe is
supposed stress free. The applied loads are of two
types: those (typical in three-dimensional contin-
uum descriptions) given pointwise, and those (less
common) prescribed on average. In the current

problem, these are the bending moment M due to
the seismic input and the normal force N due to
the effect of the pipe plug. They are defined on
the current configuration by:

Á
Ã
Í
Ã
Ä

M=
�&

Stsol

GM�seu

n
ez =

&
Stsol

(r−Rt)suu dSt

N=pA int =
&

Stsol

suu dSt

(5)

In Eq. (5) p represents the internal pressure and
A int the area of S int. The boundary conditions are
the following:
� The outer skin S ext is stress free:

Td=sn=0 (6)

� The inner skin S int is submitted to uniform
pressure:

Td=sn= −pn (7)

� At the end cross sections S0
sol and SU

sol the
tangential component of the applied shear
force vanish:

Tr
d=Tz

d=0 (8)

Finally the end cross section SU
sol is submitted

to a prescribed bending moment M and to a
normal force N. They are given by Eq. (5). In the
case of a curvature controlled loading, the mo-
ment is an unknown variable that needs to be
calculated and the rotation prescribed by the
condition:

u= (1+a(t))U (9)

2.2.3. Virtual work equation
In the case of quasi-static evolution, the princi-

ple of Virtual Work is:

Pi+Pe=0 (10)

where Pi and Pe are respectively the power of
internal and external forces. Denoting the rate of
deformation by d. and the virtual velocity by 7̂
leads to:
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−
&

V

s :d. dV+
&

S int

7̂sn dS+
&

S Usol

7̂seu dS

−
&

S 0
sol

7̂seu dS (11)

where V is the region of space occupied by the
curved pipe and

7̂= r̂er+rUâeu+ ẑez

Taking into account the boundary conditions
Eqs. (5)–(7) and Eq. (8), yields the following
equation:

−
&

V

s :d. dV−
&

S int

p7̂n dS+ (M+pRA int)Uâ=0

(12)

The constitutive law considered is the perfect
plasticity given by the following equation:

s=C:(d−dp) (13)

where C is the standard constant elastic modulus
tensor of the material, which is assumed to be
homogeneous and isotropic, and dp the plastic
deformation rate.

The total rate of deformation can be decom-
posed in two terms d=dS+a; eu�eu. The first
one, dS, corresponds to the axisymmetric evolu-
tion and the second, a; eu�eu corresponds to the
deformation of the parallels.

Differentiating Eq. (12) with respect to time
and taking into account, the constitutive law (Eq.
(13)) and the decomposition of the total deforma-
tion the rate, yields the following equation:

−
&

V

dS :C:d. S dV−p; &
S int

n7̂S+
&

V

dp:C:d. S dV

− â
&

V
dS :C:(eu�eu) dV−a; &

V

d. S :C:(eu�eu) dV

−a; â&
V

(eu�eu):C:(eu�eu) dV

+ (M: +p; RA int)Uâ+ â
&

V

dP:C:(eu�eu) dV=0

(14)

Further information concerning the model out-
lined above and its finite element discretisation is
found in Boussa et al. (1996).

Table 1
Geometry and material parameters

228.6Radius of curvature R (mm)
External radius re (mm) 84.15
Thickness t (mm) 7.11
Young modulus E (GPa) 200

300Elastic limit Sy (MPa)
Poisson ration 6 0.28

11.7Internal pressure p (MPa)
Amplitude of the rotation a [−0.03, 0.03]

2.3. An example of calculation

As an example, the bending of a pressurised
curved pipe with perfectly plastic behaviour is
presented. The computations were performed with
Castem 2000 code. The geometry, material
parameters and loading amplitudes are given in
Table 1.

Because of symmetry, the mesh was defined
only for half of the section as presented on Fig. 2.
The imposed rotation history is given in Fig. 3.
The outcome of the finite elements calculation is
the evolution of the moment versus the rotation,
given in Fig. 4. One can see that the stabilised
state is reached after a few cycles only. This is due
to the imposed displacement condition. Fig. 5
presents the history of the hoop strain at the
critical point of the structure (internal flank) ver-
sus the imposed rotation. We observe that plastic
deformation increases with the number of loading
cycles. This ratcheting effect is due to the internal
pressure that prevents ovalisation of the section,
so that the rate of deformation is not the same
during the opening and the closure sequences of
the bending.

Fig. 2. Mesh over the half of the section.
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Fig. 3. Imposed rotation versus time. Fig. 5. Hoop strain (%) versus imposed rotation.

The FEM computation is time consuming, so
that a simplified method, which permits a greater
number of simulations for a sensitivity analysis, is
necessary. Such simplified model is discussed in
the next section.

3. Simplified method

The simplified method is first presented for the
same problem considered above with an elastic
perfectly plastic model. It is then generalised for
non-linear kinematic hardening laws.

3.1. E6aluation of the hoop strain in the inner
skin

The simplified method is base on the analysis of
the (Fig. 5). We approximate the hoop strain in
the inner skin (critical point of the structure) by
the bilinear curve given in the (Fig. 6).

The elastic range is given by the interval of
rotation [2Ay

o, 2Ay
c] where Ay

o and Ay
c are the

elastic limits of the elbow during opening and
closing, respectively. The difference between Ay

o

and Ay
c is denoted l. The hoop strain varies lin-

early with the imposed rotation angle A=90×
a(t). The slope of the curve is denoted by a. The
plastic range is characterised by two different
curves with different slopes: b for opening and g

for closing.
Fig. 6 shows that our model is based on four

parameters a, b, g and l that can be determined
by a parametric method in the following way.

3.1.1. Parameter l
l corresponds roughly to the range of initial

elasticity of the inner flank:

l=Ay
o−Ay

c (15)

Fig. 6. Parameters of the simplified model.Fig. 4. Moment (Nm×104) versus imposed rotation.
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Let ay and My is, respectively, the limit rotation
and moment that lead to the first plastification.
Leconte (1992) estimates the limit moment by the
formula:

My=
SyI
reC

(16)

where, Sy the elastic limit of the material, I the
moment of inertia of the section of the pipe, re the
external radius and C a stress concentration co-
efficient. This last coefficient is given by Clarck
and Reissner (1951) as:

C=
1.8
h2/3 , h=

tR
rm

2 (17)

Where rm the mean radius, and t the thickness
of the elbow.

Considering a linear relation between ay and
My yields the following equation:

ay=k
h2/3R

1.8reE
Sy (18)

k is a flexibility coefficient given by Clarck and
Reissner (1951) as:

k=
1.73 
1−62

h
(19)

Eq. (18) and Eq. (19) lead to:

Ay
o= −Ay

c =90×ay=86.5
R 
1−62

h2/3reE
Sy (20)

The internal pressure induces initial stresses
having the tendency to decrease the value of the
limit rotation. These stresses are given by:

suu=
prm

t
(21)

Considering the difference between the behaviour
of the curved pipe in opening and closing (because
of the internal pressure) a parametric calculation
gives:

Ay
o=112.4

R 
1−62

h2/3reE
�

Sy−0.8
prm

t
�

Ay
c = −86.5

R 
1−62

h2/3reE
�

Sy−0.8
prm

t
�

(22)

Finally l is given by:

l=199
R 
1−62

h2/3reE
�

Sy−0.8
prm

t
�

(23)

The three left parameters a, b, g are determined
following the same procedure using a parametric
method based on some finite elements calculation.

3.1.2. Parameter a

This parameter presents the slope of the elastic
part of the curve. It depends only on the geometry
of the pipe. The parametric calculation gives for
a:

a= −
1

98.3
�trm

R2

�1/3

(24)

For the curved pipe at hand one finds: a=
−0.00226.

3.1.3. Parameters b, g

They correspond to the slopes of the plastic
parts of the curve for closing (b) and opening (g).
They depend on the geometry and on the elastic
limit Sy and the pressure p. Their evaluation is
more difficult than a because it is necessary to
calculate the deformation response of the struc-
ture for some cycles.

It is clear that in the absence of pressure, the
behaviour of the curved pipe is identical in open-
ing and closing. The parametric calculation gives
in this case:

b=g=3.5a (25)

Taking into account the internal pressure leads
to different values for b and g. To evaluate them,
we fixed the geometry and the elastic limit Sy and
we calculated their variations with respect of p.
The results are represented in (Fig. 7):

The curve given in the figure (Fig. 7) can be
approximated by the following formulas:

if
prm

Syt
B

1
3

ÁÃ
Í
ÃÄ

b=
�

3.5+10.5
prm

Syt
�

a

g=3.5a
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Fig. 7. Evolution of b and g with respect of the internal pressure.

if
1
3
B

prm

Syt
B

2
3

ÁÃ
Í
ÃÄ

b=7a

y=
�

6−7.5
prm

Syt
�

a

if
2
3
B

prm

Syt
B1

Á
Ã
Í
Ã
Ä

b=
�

11−6
prm

Syt
�

a

g=
�

3−3
prm

Syt
�

a

(26)

In (Eq. (26)), the adimensional number
(prm)/(Syt) measures the internal pressure effect.

Our method permits the calculation of the re-
sponse of the structure (hoop strain) in the critical
point (the inner skin of the flank). This response
can be decompsed into two parts:
� A cyclic elastic part:

ecir=aA(t) (27)

where ecir is the hoop strain.
� A cyclic plastic part given by the derivative

with respect of time of the plastic ratchet r; :

r; =

ÁÃ
Í
ÃÄ

0 if elastic evolution

(b−a)A: (t) if plastic evolution (closing)

(g−a)A: (t) if plastic evolution (opening)

(28)

To obtain the global response, one must write
the algorithm corresponding to the previous evo-
lution and solve the problem numerically. Our
method gives very good results with respect to the
ones obtained by the FEM method. Furthermore,
it is less time consuming.

3.2. E6aluation of the plastic ratchet in the case
of a seismic inputs

Let us begin by evaluating of the plastic ratchet
in the case of a centred cyclic loading opening/
closing as shown in (Fig. 8). Following our sim-
plified model the evolution of the ratchet takes
place when the amplitude of the imposed rotation
is \2l as shown in Fig. 8. For every cycle, the
plastic deformation (hoop strain) cycle is given as
follows:

Fig. 8. Plastic evolution takes place for the bold parts of the
curve.
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Table 2
Comparaison of the simplified method and FEM results

FEM ratchet (%)m Simplified ratchet (%)

1 00
2 2.93

12.913.53
4 24.5 21.7

Table 3
Comparaison of the simplified method and FEM results for a
seismic input

FEM ratchet (%)m Simplified ratchet (%)

0.611.85 0.56
3.82.59 3.73
7.09 7.043

12.283.5 12.23

Á
Í
Ä

(b−a)(−2Amax+2l) for closing

(g−a)(2Amax+2l) for opening
(29)

Where Amax denotes the maximum of the abso-
lute value of A(t).

Considering Eq. (29) and taking into account
the number of cycles N yields the following ex-
pression of the final ratchet:

r=2N �b−g �(Amax− l) (30)

For the validation of our model, we calculated
the ratchet due to a ten cycle loading with a
maximum amplitude Amax=m−0.554 (m=
(max�a(t)/ay) using both the simplified formula
and the FEM. In both cases we used the geometry
and material parameters given in Table 1. The
pressure was taken: 11.7 MPa. The results are
given in Table 2. One can observe a good correla-
tion between the two methods.

For a realistic seismic input like the one given
in (Fig. 9), we can use the same procedure. In

addition, approximating the loading history as
Gaussien process leads the following formula:

r=
2ps0Amax�b−g ��1−erf
� 1


2s0Amax

��
(31)

where s0 is the standard deviation of the signal
with normalised maximum amplitude, and erf is
the error function defined by:

erf(z)=
2


p

& z

0

e−y2
dy (32)

Table 3 summarises the results of a series of
calculations of the ratchet by using either the
simplified method (Eq. (31)) and the direct FEM.
The predictions of the simplified method are very
satisfactory.

3.3. Extension of the simplified method for more
realistic material beha6iour

Generally, steels present a non-linear plastic
behaviour, which is not well described by the
perfect plasticity. Non linear kinematic hardening
effects are observed. They are often coupled with
isotropic hardening. Such complex memory ef-
fects are observed in 316-L steel. To account for
these effects, internal hardening parameters are
necessary (Chaboche et al., 1979). The evolution
of these parameters is very sensitive to the se-
quences of the applied loading so that the previ-
ous version of the simplified method cannot be
applied directly. An extension is then necessary.
Our main idea is based on the use of an equiva-
lent-elastic perfectly plastic model in the sense
that the final ratchet and fatigue damage should
be the same as the ones predicted by the FEM
calculation according to non linear hardening law.Fig. 9. Example of seismic input.
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3.3.1. Calculation of the equi6alent elasticity limit
Suppose that we have the resulting calculations

of the FEM using a non-linear kinematic harden-
ing law. The outcome of this calculation is the
internal hoop strain in the inner flank of the pipe.
We then look for an equivalent perfect plastic
law, which gives, for the same level of loading,
similar values of the final ratchet and fatigue
damage as those given by the non-linear kine-
matic hardening behaviour. This equivalent law is
subsequently characterised by a fictitious elastic
limit S*y . This limit is obtained by a parametric
procedure based on a FEM calculations. The
equivalent law must satisfy the following loading
conditions:

Á
Ã
Í
Ã
Ä

Sy*\Sy

ay*\ay

m*Bm

P*BP

(33)

In Eq. (33) the symbol (*) denotes fictitious
quantities. We recall that, p represents the internal
pressure, py the pressure level that gives the first
plasticity without bending moment, Sy the elastic
limit, ay the angle corresponding to Sy, P and m
are adimensional constants that characterise the
level of loading such that:

Á
Í
Ä

p=P×py

a=m×ay

The level of loading is determined in such a way
that one obtains the same maximal opening am-
plitude of the elbow as with the FEM calcula-
tions. This parameter m* is then given by:

m*=
m×ay

ay*
(34)

3.3.2. Results of the parametric analysis
The elastic limit Sy* is calculated using an itera-

tive process: we look for the Sy* that permits to
obtain similar values of the ratchets given by the
FEM and the simplified method by minimising
their difference. Examples of results from the
parametric calculations are presented in Table 4.
Note that for the FEM calculations we submitted
the pipe to a seismic input.

Using results from Table 4 one can determine a
formal expression of the parameter Sy* For exam-
ple if P=0.61 we find that:

Sy*=73.2×m+119.62 (35)

4. Fatigue analysis

The last step in structural integrity assessment
is the fatigue limit analysis. Let Nf0 denote the
number of cycles to failure under cyclic strain
only and Nf the number of cyclic to failure under
the combination of cyclic strain and ratchet. The
modified Masson–Coffin equation to take ac-
count of ratcheting is then:

Table 4
Results of the parametric calculation

p (MPa) Sy*Equivalent (%)FEM (%)level PLevel mSy (MPa)

26625911.7 2 0.740.750.61
2880.9750.6111.7 0.97259 2.3

1.55 3390.61325911.7 1.559
2.08 38611.7 259 3.63 0.61 2.1

259 2.46 2.45 412411.7 0.61
230 0.71 0.712 29038 0.47

3291.0811.080.378 3288
1.2711.7 318230 3 0.68 1.26

288 3 0.5411.7 1.85 1.857 359
3441.8811.900.87230 315

288 3 0.70 2.76 2.7515 384
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Table 5
Comparaison of the simplified method and FEM results for a
seismic input

Fatigue damage (equivalent)Fatigue damage (FEM)

9.34E-3 1.39E-2
1.66E-21.18E-2

1.75E-2 2.48E-2
3.29E-22.35E-2

2.74E-2 3.85E-2
2.15E-21.11E-2
3.08E-21.52E-2
1.97E-21.49E-2
3.06E-22.11E-2

1.95E-2 2.35E-2
3.56E-22.78E-2

fatigue-ratcheting analysis is proposed. It is appli-
cable to materials with complex behaviour and
does not necessitate lengthy FEM calculations.
Our model is suitable to perform a great number
of simulations necessary for a parametric sensitiv-
ity analysis that could be required to derive a
design rule for a code of practice.
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Fatigue-Seismic Ratcheting Interactions in Pressurized El-
bows. J. Press. Technol. 11G, 396–402.

Chaboche, J.L., Cordie, G., DangYan, K., 1979. Modelisation
of the strain memory effect on the cycle hardening of
316-L stainless steel Proceedings. SMIRT 5, Vol. M.

Clarck, R.A., Reissner, E., 1951. Bending of curved tubes.
Adv. Appl. Mech. 2, 93–122.

Coffin, L.F., 1970. The deformation and fracture of a ductile
metal under superimposed cyclic and monotonic strain. In:
ASTM STP 567. ASTM, Philadelphia, pp. 53–76.

Leconte, J., 1992. Chaudronnerie et tuyauteries industrielles,
tome 1 Conception, Technique et Documentation.
Lavoisier, Paris.

Nf

Nf0

=
�

1−
rmax

ef

�−1/c

(36)

where rmax is the value of the ratchet given by
the previous simplified calculation, ef is the mate-
rial ductility and c is a material constant. The
cumulative damage is given by

D=Scycles

1
Nf

(37)

where the sum is performed on the number of
cycles of the seismic input. Table 5 gives some
predictions of the induced damage either by using
non-linear kinematic hardening law and the sim-
plified model. These results are satisfactory.

5. Conclusion

In this paper, a complete simplified method for

.
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