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Abstract— This paper introduces an expectation-maximization
(EM) algorithm within a wavelet domain Bayesian framework for
semi-blind channel estimation of multiband OFDM based UWB
communications. A prior distribution is chosen for the wavelet
coefficients of the unknown channel impulse response in order to
model a sparseness property of the wavelet representation.This
prior yields, in maximum a posteriori estimation, a thresholding
rule within the EM algorithm. We particularly focus on reduc ing
the number of estimated parameters by iteratively discarding
“unsignificant” wavelet coefficients from the estimation process.
Simulation results using UWB channels issued from both models
and measurements show that under sparsity conditions, the
proposed algorithm outperforms pilot based channel estimation
in terms of mean square error and bit error rate and enhances
the estimation accuracy with less computational complexity than
traditional semi-blind methods.

I. I NTRODUCTION

A UWB radio signal is defined as any signal whose band-
width is larger than 20% of its center frequency or greater
than 500 MHz [1]. In recent years, UWB system design has
experienced a shift from the traditional “single-band” radio
that occupies the whole 7.5 GHz allocated spectrum to a
“multiband” design approach [2]. That consists in dividing
the available UWB spectrum into several subbands, each one
occupying approximately 500 MHz.

Multiband Orthogonal Frequency Division Multiplexing
(MB-OFDM) [3] is a strong candidate for multiband UWB
which enables high data rate UWB transmission to inherit
all the strength of OFDM that has already been shown for
wireless communications (ADSL, DVB, 802.11a, 802.16.a,
etc.). This approach uses a conventional coded OFDM system
[4] together with bit interleaved coded modulation (BICM)
and frequency hopping over different subbands to improve
diversity and to enable multiple access.

Basic receivers proposed for MB-OFDM [3], estimate the
channel by using pilots (known training symbols) transmitted
at the beginning of the information frame, implicitly assuming
a time invariant channel within a single frame. Thus, for
an accurate channel acquisition, one must send several pilot
patterns resulting in a significant loss in spectral efficiency.

Recent works [5], [6] have reported promising results on the
combination of channel estimation and data decoding process
by using the Expectation-Maximization (EM) algorithm [7] .
Though the latter scheme outperforms pilot based receivers,
it has a higher complexity that may be of a critical concern

for its practical implementations. This complexity is mainly
dominated by the number of estimated parameters for channel
updating and the decoding algorithm within each iteration.

In this work, we consider a semi-blind joint channel esti-
mation and data detection scheme based on the EM algorithm,
with the objective of minimizing the number of estimated
parameters and enhancing the estimation accuracy. This is
achieved by expressing the unknown channel impulse response
(CIR) in terms of its discrete wavelet series, which has been
shown to provide aparsimonious representation [8], [9]. Thus,
we choose a particular prior distribution for the channel
wavelet coefficients that renders the maximum a posteriori
(MAP) channel estimation equivalent to a hard thresholding
rule at each iteration of the EM algorithm. The latter is
then exploited to reduce the estimator computational load
by discarding “unsignificant” wavelet coefficients from the
estimation process. Moreover, since the probability of encoded
bits are involved in the EM computation, we naturally combine
the iterative process of channel estimation with the decoding
operation of encoded data.

This paper is organized as follows. Section II introduces
MB-OFDM and its wavelet domain channel estimation obser-
vation model. In section III, we first describe a MAP version of
the EM algorithm for channel estimation and then show how
the number of estimated parameters can be reduced through
the EM iterations. The combination of the channel estimation
part with the decoding operation and implementation issues
are also discussed. Section V illustrates, via simulations, the
performance of the proposed receiver over a realistic UWB
channel environment and section VI concludes the paper.

Notational conventions are as follows:Dx is a diagonal
matrix with diagonal elementsx = [x1, . . . , xN ]T , Ex[.] refers
to expectation with respect tox, IN denotes an(N × N)
identity matrix; ‖.‖, (.)∗, (.)T and (.)H denote Frobenious
norm, matrix or vector conjugation, transpose and Hermitian
transpose, respectively.

II. SYSTEM MODEL AND WAVELET DOMAIN PROBLEM

FORMULATION

MB-OFDM system divides the spectrum between 3.1 to
10.6 GHz into several non-overlapping subbands each one
occupying 528 MHz of bandwidth [3]. The transmitter archi-
tecture for the MB-OFDM system is very similar to that of a
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conventional wireless OFDM system. The main difference is
that MB-OFDM system uses a time-frequency code (TFC) to
select the center frequency of different subbands which is used
not only to provide frequency diversity but also to distinguish
between multiple users (see figures 1 and 2). Here, we consider
MB-OFDM in its basic modeie. employing the three first
subbands.
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Fig. 1. Example of time-frequency coding for the multiband OFDM system:
TFC={1, 3, 2, 1, 3, 2, ...}.

We consider the multiband OFDM transmission of figure 2
using N data subcarriers. At the receiver, assuming a cyclic
prefix (CP) longer than the channel maximum delay spread and
perfect synchronization, OFDM converts a frequency selective
channel intoN parallel flat fading subchannels [4] for each
subband as

yi,n = Dsi,n
hi,n + zi,n i ∈ {1, 2, 3}, n = 1, . . . , Nsym

(1)
where (1 × N) vectorsyi,n, si,n and hi,n denote received
and transmitted symbols, and the channel frequency response
respectively; the noise blockzi,n is assumed to be a zero mean
white complex Gaussian noise with distributionCN (0, σ2IN )
; i is the subband index andn refers to the OFDM symbol
index inside the frame. The observation model corresponding
to all three subbands can be written in frequency domain as

Ym = D
Sm

Hm + Zm m = 1, . . . , Msym (2)

where Ym = [y1,n,y2,n,y3,n]T , Sm = [s1,n, s2,n, s3,n]T ,
Hm = [h1,n,h2,n,h3,n]T and Zm = [z1,n, z2,n, z3,n]T are
(M × 1) vectors, withM = 3N andMsym = Nsym/3. In the
remainder, unless otherwise mentioned, we will not write the
time indexm for notational convenience.

In order to take advantage of the wavelet based estimation,
the channel impulse response is expressed in terms of its
orthogonal discrete wavelet coefficients. LetFM,L be the
truncated fast Fourier transform (FFT) matrix constructedfrom
the (M×M ) FFT matrix by keeping the firstL columns where
L is the length of the CIR over a group of three subbands. We
defineW as the(L×L) orthogonal discrete wavelet transform
(ODWT) matrix. The unknown channel can be expressed as
H = FM,LWHg, whereg is the (L × 1) vector of the CIR
wavelet coefficients. The Observation model 2 is rewritten as

Y = D
S
Tg + Z (3)

whereT = FM,LWH.
Although at the transmitter, the channel is practically used

by slices of 528 MHz bandwidth that corresponds to one of
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Fig. 2. TX architecture of the multiband OFDM system.

the subbands, at the receiver side we gather three received
OFDM symbols for estimating the wavelet coefficients of the
CIR, taken over all of the subbands (1.584 GHz bandwidth).
This is motivated by the fact that estimating the channel over
a wider bandwidth leads to a sparser wavelet representation.
Besides, this approach simplifies the receiver architecture since
there is no need to change the central frequency for down
converting different subbands.

III. T HE EM-MAP ALGORITHM FOR WAVELET DOMAIN

CHANNEL ESTIMATION

The EM algorithm proposed in this section is able to inte-
grate the advantages of wavelet based estimation via the prior
choosen for channel wavelet coefficients. Next, we see how
the MAP estimator leads to a thresholding procedure which is
used for reducing the number of estimated coefficients at each
iteration of the EM algorithm.

A. An equivalent model and the EM principle

Our first step consists in decomposing the AWGN in (3)
into the sum of two different Gaussian noise terms as

Z = D
S
Z1 + Z2 (4)

whereZ1 and Z2 are (M × 1) independent Gaussian noise
vectors such thatp(Z1) = CN (0, α2IM ) and p(Z2) =
CN (0, σ2IM − α2D

S
DH

S
). Since we are using normalized

QPSK symbols,D
S
DH

S
= IM and the covariance matrix ofZ2

reduces toΣ
2

= (σ2 − α2)IM . We define the positive design
parameterρ , α2/σ2, (0 < ρ ≤ 1) and notice that setting
ρ = 1 leads toZ2 = 0 which is equivalent to working with
the initial model (3). However, for0 < ρ < 1, the above noise
decomposition allows the introduction of a hidden channel
vectorH̃ defined as{

H̃ = Tg + Z1

Y = D
S
H̃ + Z2.

(5)

The hidden vector̃H provides a direct relation between true
and estimated wavelet coefficients corrupted by an additive
white Gaussian noise, allowing the two-stage observation
model (5) which is equivalent to (3). However, the difference
with a standard denoising problem is thatS and H̃ are
unknown. Hence, the observation model has missing datas and
hidden variables and the MAP solution ofg has no closed
form. In such situations, the EM algorithm [7] is often used
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to maximize the expectation of the posterior distribution over
all possible missing and hidden variables.

Let X = {Y,S, H̃} be the complete data set in the
EM algorithm terminology. Note that the observation setY

determines only a subset of the spaceX of which X is
an outcome. We searchg that maximizeslog p(g|X). After
initialization by a short pilot sequence at the beginning ofthe
frame, the EM algorithm alternates between the following two
steps (until some stopping criterion) to produce a sequenceof
estimates{g(t), t = 0, 1, . . . , tmax}.

• Expectation Step (E-step): The conditional expectation
of the complete log-likelihood given the observed vector
and the current estimateg(t) is calculated. This quantity
is called theauxiliary or Q-function

Q
(
g,g(t)

)
= E

S,H̃

[
log p(Y,S, H̃|g)

∣∣∣y,g(t)
]

(6)

• Maximization Step (M-step): The estimated parameter
is updated according to

g(t+1) = arg max
g

{
Q

(
g,g(t)

)
+ log π(g)

}
(7)

whereπ(g) is a prior distribution for the wavelet coefficients.
Next, we derive the specific formulas of each step, according
to (5).

B. E-step: Computation of the Q-function

The complete likelihood is

p(Y,S, H̃|g) = p(Y|S, H̃,g) p(S|H̃,g) p(H̃|g).

According to (5), conditioned oñH, Y is independent ofg.
Furthermore,S which results from coding and interleaving
of bit sequence is independent of̃H and g. SinceZ1 is a
complex white Gaussian noise, the complete log-likelihood
can be simplified to

log p(Y,S, H̃|g) = log
[
p(Y|S, H̃) p(S) p(H̃|g)

]

= log p(H̃|g) + cst.

= −
gHTHTg − 2gHTHH̃

α2
+ cst.

(8)

where cst. are different constant terms that do not depend on
g. According to (6) we have

Q
(
g,g(t)

)
= E

S,H̃

[
−

gHTHTg − 2gHTHH̃

α2
+ cst.

∣∣∣Y,g(t)
]

= −
‖ 〈H̃(t)〉 − Tg ‖

2

α2
+ cst. (9)

where〈H̃(t)〉 , E
S,H̃

[H̃|Y,g(t)].
From (9), it is obvious that the E-step involves only the

computation of〈H̃(t)〉, we have

〈H̃(t)〉 =
∑

S∈C

( ∫

H̃∈H

H̃ p(H̃|Y,g(t)) dH̃

)
p(S|Y,g(t))

(10)

where the last equation results from the independence between
S andH̃ belonging respectively to the setsC andH which
contain all of their possible values.

In order to evaluate〈H̃(t)〉, we first have to evaluate the
conditional meanµ(t)

H̃
of H̃ as

µ
(t)

H̃
=

∫

H̃∈H

H̃ p(H̃|Y,g(t)) dH̃ (11)

Since bothp(Y|H̃) and p(H̃|g(t)) are Gaussian densities,
p(H̃|Y,g(t)) ∝ p(Y|H̃) p(H̃|g(t)) is also Gaussian. By
standard manipulation of Gaussian densities, we obtain

µ
(t)
h = Tg(t) + ρDH

S

(
Y −D

S
Tg(t)

)
. (12)

By using (12) in (10) and after some simplifications we get

〈H̃(t)〉 = (1 − ρ)Tg(t) + ρD
H

S
Y (13)

whereD
S

=
∑

s∈C
D

S
p(S|Y,g(t)).

The E-step is then completed by inserting〈H̃(t)〉 into
Q(g,g(t)), equation (9).

C. M-step: Wavelet Based MAP Estimation

In this step the estimate of the parameterg is updated as
given in (7) whereQ(θ, θ(t)) is given by (9)

g(t+1) = arg max
g

{
−
‖ 〈H̃(t)〉 − Tg ‖

2

α2
+ log π(g)

}
. (14)

Due to the orthonormality of both Fourier and wavelet trans-

forms, THT = IL and we can replace‖ 〈H̃(t)〉 − Tg ‖
2

by
‖ g̃(t) − g ‖

2
, where

g̃(t) = TH〈H̃(t)〉

= (1 − ρ)g(t) + ρ (D
S
T)HY (15)

The M-step can be written as

g(t+1) = argmax
g

{
−
‖ g̃(t) − g ‖

2

α2
+ log π(g)

}
. (16)

Actually g(t+1) in (14) is no more than the MAP estimate
of g from the observation model

g̃(t) = g + Z′
1 (17)

whereZ′
1 = THZ1 ∼ CN (0, α2IL). From the Bayes theorem,

the posterior distribution ofg is given by

p
(
g|g̃(t)

)
∝ p

(
g̃(t)|g

)
π (g) (18)

wherep(g̃(t)|g) is the Gaussian likelihood,̃g ∼ CN (g, α2IL).
In this approach, we adopt the Bernoulli-Gaussian prior dis-
tribution π (g) for the wavelet coefficientsg of the unknown
CIR described by

π (gj) = λ δ(gj) + (1 − λ) CN gj

(
0, τ2

)
(19)

for j = 1, . . . , L, which allows us to model a sparseness
property of UWB channels in wavelet domain. This amounts
considering that the wavelet coefficients have a probability λ to
be zero and a probability1−λ to be distributed asCN (0, τ2).
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In order to deal with that particular model, we introduce an
additional state variable (or indicator)βj ∈ {0, 1} such that
we can express this prior conditionally as




(gj |βj = 0) ∼ δ(gj) with probabilityλ,

(gj |βj = 1) ∼ CN gj

(
0, τ2

)
with probability1 − λ.

(20)
This prior model, conditionally on that state variable, leads
to a Gaussian posterior forgj which makes the estimation
explicit; from the direct observation modelg̃

(t)
j = gj + Z ′

1,j,
we can express these posterior probabilities ofβj as

p
(
βj = 0|g̃

(t)
j

)
= λ N

(
0, α2

)
/c

p
(
βj = 1|g̃

(t)
j

)
= (1 − λ) N

(
0, α2 + τ2

)
/c

(21)

where the constantc = λN
(
0, α2

)
+(1−λ)N

(
0, α2 + τ2

)
.

From this set of equations, we easily notice that the indica-
tor variableβj allows us to discriminate between the noise
coefficients (forβj = 0) and the effective channel wavelet
coefficients (forβj = 1), eventually corrupted by noise. The
indicator variablesβj are estimated, in the MAP sense, by

β
(t+1)
j =






0, if p
(
βj = 0|g̃

(t)
j

)
≥ 0.5

1, elsewhere.

(22)

Therefore, the MAP estimates of the channel wavelet coeffi-
cients are obtained by a simple denoising/thresholding rule as

g
(t+1)
j =





0, if β

(t+1)
j = 0

τ2

α2 + τ2
g̃
(t+1)
j , if β

(t+1)
j = 1

(23)

1) τ and λ updating: The prior parametersτ andλ stand
respectively for the (significant)-wavelet coefficients energy
and unsignificant coefficient probability. The update rulesfor
these two parameters are MAP based rules derived from
assigning conjugate priors to these parameters [10]:

λ̂ = (L̃ − 1/2)/(L − 1),

τ̂2 = η/(L − L̃)
(24)

where L̃ = Card{j
∣∣ βj = 0} and η =

∑
βj=1

∣∣g(t+1)
j

∣∣2;
Card{.} denoting the set cardinality.

2) Reduction of the number of estimated parameters:
The thresholding procedure derived in this section, provides
an easy framework for reducing the number of estimated
coefficients. This can be done by discarding at each iteration,
the elements ofg(t+1) that are replaced by zero in (23). The
underlying assumption is as follows: whenever the estimator
attributes an unknown wavelet coefficient to noise (replaceit
by zero), this coefficient will always be considered as noise
and so will not be estimated in future iterations.

This operation is shown in figure 3 and can be modeled as:

g
(t+1)
tr = Θ

(
g(t+1)

)
, Ttr = Ξ

(
T

)
(25)

where the truncation operatorΘ(.) gathers ing
(t+1)
tr the

components ofg(t+1) that must be kept and the operatorΞ(.)
constructsTtr from T by keeping the rows corresponding to
kept indexes. During the first iteration (t = 0), the algorithm
does not perform any truncation and the EM algorithm esti-
mates all coefficients. However, after each M-step, the number
of unknown parameters to be estimated in the next iteration is
reduced according (25) by usingg(t+1)

tr andTtr in the update
formula of the E-step (13).

IV. DECODING METHOD AND IMPLEMENTATION ISSUES

According to equation (10), we make use of the information
on transmitted symbols, obtained from the decoder, to update
the channel estimate at each iteration. Besides, the decoder
requires an estimate of the channel in order to provide the
probability of encoded bits. Hence, the semi-blind channel
estimation algorithm is naturally combined with the process
of data decoding. Thea posteriori probability of the unknown
symbolSk, p(Sk|Yk, Ĥ

(t)
k ), is calculated using thea posteriori

probabilities provided by the decoder at the end of thet-th
iteration as

p(Sk|Yk, Ĥ) =

B∏

i=1

Pdec(ck,i) (26)

wherePdec(ck,i) is thea posteriori probability corresponding
to the i-th bit of Sk, ck,i. At the first iteration, where noa
priori information is available on bitsck,i, Pdec(ck,i) are set
to 1/2.

Θ
EM-MAP Estimation
of Channel Wavelet

Coefficients

g(t)g
(t)
tr

Soft Demapping
&

SISO Decoder

P
(t)
dec(ck,i)

Uncoded Bits Probabilities

at last iteration

Observed Frame

g(0)

P
(0)
dec(ck,i) = .5

Observed
Frame

Decoded
Bits

Fig. 3. EM-MAP channel estimation combined with the decoding process.

Among several possible ways to practically implement a
joint channel estimation and decoding receiver, we adopt the
following global procedure (see figure 3).

• Initialization (t = 0)

– Set all probabilities of coded bitsPdec(ck,i) to 1/2
and derivep(S|Y,g(0)) according to (26).

– Initialize the unknown vectorg by g(0) obtained
from pilot symbols.

• for t = 1, . . . , tmax

– Use the current estimateg(t) to calculateg(t+1)

according to (23).
– Discard the wavelet coefficients that are replaced by

zero for the next iteration by evaluatingg(t)
tr andTtr

from (25).
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– if t 6= tmax: Use the current estimateg(t)
tr to update

the probability of encoded bitsPdec(ck,i) and derive
p(S|Y,g(t)) from (26).
else: Decode the information data by thresholding
the uncoded bit probabilities with 1/2.

V. SIMULATION RESULTS

In this section we present a comparative performance study
of the proposed EM-MAP algorithm. The binary information
data are encoded by a non-recursive non-systematic convo-
lutional encoder with rateR = 1/2 and constraint length 3.
Each frame has a payload of 1 KB along with 3 pilot symbols
at the beginning for initializing the channel of each subband.
The interleaver is random and operates over the entire frame.
Among different wavelet families, “symmetric” wavelet basis
functions [11] providing the sparser representation [9] have
been considered.Unless otherwise mentioned, the curves are
obtained aftertmax = 4 iterations.

First, a sparse channel model where only 20 wavelet coef-
ficients out of total 96 have non zero values, is considered.
The second channel, referred to as Corridor, is a line of sight
(LOS) scenario issued from realistic UWB indoor channel
measurements [12] where the receive and transmit antennas
are located in a corridor separated by 9 meters.

Performance comparison is made with two pilot-only based
approach using ML and minimum mean square error (MMSE)
channel estimation, referred to as pilot-ML and pilot-MMSE.
We also compare the proposed algorithm with two semi-blind
channel estimation based on the EM algorithm, called respec-
tively EM-Freq and EM-Wav. The first approach, consists of
estimating the channel over all of the three subbands, using
the model (3), similar to [5] while the second scheme is a
wavelet domain EM based estimation of the channel where
the prior model is set to have a uniform distribution.

Figure 4 depicts the mean square error (MSE) between
true and estimated channel as a function ofEb/N0. It can be
noticed that, although the pilot-MMSE approach improves the
estimation accuracy for low SNR values, the performance of
pilot based channel estimation methods are very far from the
family of semi-blind methods. Comparing the wavelet domain
semi-blind approach (EM-Wav) and the frequency domain
approach (EM-freq), shows that significant gain is achieved
by the former method. As shown, the best performance is
achieved by the EM-MAP method. We see that by using
EM-MAP, a gain of almost 4 dB in SNR is achieved at
MSE=2 × 10−3, as compared to the EM-Wav method. This
clearly shows the adequacy of the EM-MAP method for the
case where the unknown channel has few non zero wavelet
coefficients, which is in perfect agreement with the prior
model.

Figure 5 shows the BER results along with the BER for
the case of perfect channel state information (CSI). It can
be seen that at a BER of10−3, the pilot-ML and the EM-
Freq approaches are respectively3.9 and 2 dB of SNR far
from the BER obtained with the perfect channel. Furthermore,
the performance of the Pilot-MMSE approach is not shown
since it was very close to that of Pilot-ML. Also, we observe

that wavelet based semi-blind methods perform closely to the
perfect CSI case. For example, at BER=10−4, the EM-MAP
and EM-Wav method have respectively about 0.2 dB and 0.5
dB of SNR degradation from the performance obtained with
perfect CSI.
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Fig. 4. Mean square error between the true and estimated coefficients for
the sparse channel model.
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Fig. 5. BER performance of the EM-MAP method over the sparse channel
model.

We now evaluate the performance of EM-MAP by con-
sidering the Corridor channel. Figure 6, shows that wavelet
based methods again outperforms pilot based and EM-Freq
methods in terms of MSE and BER. However, the EM-MAP
performance is now comparable to that of EM-Wav method.
This can be explained by noting that when the channel is
not sparse, small values are attributed toλ by the algorithm
(see (24)). This leads to a gaussian prior model with a
large variance compared to the noise variance, which can be
approximated with a uniform prior. As a results, the prior
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becomes less informative and the EM-MAP performs close
to EM-Wav, as shown in figures 6. Thus, the proposed EM-
MAP algorithm is able to adapt its prior model parameters for
each propagation environment.
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Fig. 6. Mean square error between the true and estimated coefficients over
the Corridor channel.

Figure 7 shows the average number of estimated parameters
versus the iteration number different channel scenarios. As
observed, the EM-MAP approach tends to reduce significantly
the number of estimated parameters. This can be seen for the
sparse channel where the number of estimated parameters is
reduced up to 20 parameters at the fifth iteration. Furthermore,
under non-sparse Corridor channel, the figure shows that
EM-MAP method is preferred to EM-Wav, due to its lower
computational load.
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Fig. 7. Reduction of the number of estimated parameters through iterations,
Eb/N0 = 8 dB.

VI. CONCLUSION

This paper proposed a semi-blind MAP channel estimation
algorithm that integrates the advantages of wavelet based
estimation. The investigated method naturally combines the
EM iterations with the decoding process. We derived an equiv-
alent data model for the multiband OFDM system involving
the channel over all 3 subbands expressed in the wavelet
domain. By choosing a Bernoulli-Gaussian prior distribution
for the channel wavelet coefficients, the MAP estimator yields
a thresholding procedure at the M-step of the EM algorithm
which we used to reduce the number of estimated coefficients.
With only few iterations, the EM-MAP method provides
significant reduction in the number of estimated parameters
and outperforms all considered pilot based and semi-blind
methods.
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