J. Gilbert, C. Lemaréchal, C. Sagastizàbal, G. Cohen, and J. Culioli, Numerical Optimization , Theoretical and Practical Aspects Stochastic optimal control and decomposition-coordination methods, Bertsekas D (2000) Dynamic Programming and Optimal Control Recent Developments in Optimization. Lecture Notes in Economics and Mathematical Systems, pp.72-103, 1995.

P. Carpentier, G. Cohen, and A. Dallagi, Particle methods for stochastic optimal control problems, Computational Optimization and Applications, vol.15, issue.3, 2009.
DOI : 10.1007/s10589-013-9579-y

URL : https://hal.archives-ouvertes.fr/hal-00962484

A. Dallagi, Méthodes particulaires en commande optimale stochastique Thèse de doctorat, Université Paris 1, Panthéon-Sorbonne Dantzig G (1955) Linear programming under uncertainty, Management Science, vol.1, pp.197-206, 2007.

A. Gersho, R. Gray, and W. Römisch, Vector Quantization and Signal Compression Scenario Reduction Algorithms in Stochastic Programming, Computational Optimization and Applications, vol.24, pp.187-206, 1992.

H. Heitsch, W. Römisch, and C. Strugarek, Stability of Multistage Stochastic Programs, SIAM Journal on Optimization, vol.17, issue.2, pp.511-525, 2006.
DOI : 10.1137/050632865

URL : https://hal.archives-ouvertes.fr/hal-00977507

J. Higle and S. Sen, Stochastic Decomposition: A Statistical Method for Large Scale Stochastic Linear Programming Dordrecht Niederreiter H (1992) Random Number Generation and Quasi-Monte Carlo Methods Scenario tree generation for multiperiod financial optimization by optimal discretization, CBMS-NSF Regional Conference Series in Applied Mathematics, pp.251-271, 1996.
DOI : 10.1007/978-1-4615-4115-8

W. Powell, Approximate Dynamic Programming Wiley Series in Probability and Statistics On complexity of multistage stochastic programs, Operations Research Letters, vol.34, pp.1-8, 1995.

A. Shapiro, A. Ruszczynski, P. Amster-dam, E. Girardeau, and . R&d, Stochastic Programming, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00976649