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Abstract

For high amplitudes of vibrations, loudspeakers are subject to nonlinear phenomena

that are responsible for audible distortions. In order to describe the complex dy-

namics of the system, the displacement field as well as the radiated sound pressure

must be expressed in the time-domain. Thus the present study proposes a transient

model of the acoustic radiation of axisymmetric structures. The pressure field is

approximated by the Rayleigh integral corresponding to a monopole source distri-

bution over the non-planar vibrating surface. The displacement field is expanded on

the linear modes of the structure and a change of variables in the Rayleigh integral

is then proposed in the case of a monotonic profile function to compute the Spatial

Impulse Response associated to each mode of vibration efficiently. The results are

compared to the formulation obtained in the case of planar and spherical sources.

The method of calculation is then derived in the case of a typical loudspeaker profile

(association of a truncated cone with a spherical cap). Finally, the present approach

is used to estimate the nonlinear radiation pattern of a prototype loudspeaker and

predictions are compared to measurements in anechoic room.
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Nomenclature

a external radius

c celerity of sound in air

h0(r) profile function

P (x, t) Acoustic pressure

qp time-function associated

to the pth natural mode

r radial coordinate

R curvature radius

for the spherical cap

S axisymmetric structure

t time variable

t′ integration time

x observation point

xS integration point

xi impact point

θi angle of the impact point

Φp pth natural mode for the

flexural displacement

ρ density of air

σ ratio of densities

Bc = ( ~ux, ~uy, ~uz) Cartesian basis

Bi = ( ~tix, ~tiy, ~ni) local basis

(x, y, z) coordinates in the basis Bc

(r2, φ) coordinates in the basis Bi

−→
Tα tangent vector with respect

to the variable α

Hp Spatial Impulse Response

associated to mode p
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1 INTRODUCTION

The aim of an electrodynamic loudspeaker is to transform an electrical sig-1

nal into sound. Such a transduction is expected to be linear. However, for2

high levels of vibrations, nonlinear phenomena appear and are responsible3

for audible distortions. The various sources of nonlinearities can be separated4

into two parts [1,2]: “electrical” nonlinearities due to the large displacement5

of the coil in the permanent magnet, and “mechanical” nonlinearities due to6

large displacements of the moving parts of the system (geometrical nonlinear-7

ities). In order to describe the complex dynamics of the system subjected to8

large amplitude motion, the displacement field must be expressed in the time-9

domain. In that case, a common way to compute the transient displacement10

field is to expand the transverse displacement of the structure onto the linear11

modes. This method has received much attention in the literature in the case12

of circular sources [3], axisymmetric sources [4] and recently in the case of13

loudspeaker like-structure [5] but none of the cited studies include the acous-14

tic radiation of the structure. In order to compute the acoustic field radiated15

by thin structures subjected to large amplitude motion, the present article16

proposes a transient model of acoustic radiation that takes advantage of the17

modal expansion.18

Transient acoustic radiation of planar sources vibrating in an infinite planar19

baffle has received much attention in the literature. The Rayleigh surface in-20

tegral is in that case an exact expression for predicting the acoustic pressure21

produced by such sources at any observation point. An extensive review of the22

various approaches which have been used to evaluate this radiation integral23

has been given by Harris[6]. The most common way to compute the transient24
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radiation from such sources is to evaluate the so-called Spatial Impulse Re-25

sponse (S.I.R.) as described by Stepanishen [7]. This formulation has been26

developed initially in the case of an uniform velocity for a circular source, and27

has then been extended to handle the case of nonuniform velocity patterns28

[8,9] using a modal expansion of the displacement field.29

For nonplanar sources, the Rayleigh surface integral is no longer valid, since30

diffraction effects appear. An analytical formulation of the transient radiation31

of a body of arbitrary shape has been derived by Hu and Wu [10,11], who32

expressed the acoustic pressure as a sum of integrations of simple and doublet33

source distributions and their couplings induced by the normal and tangential34

components of the particle velocity. Under that consideration, the Rayleigh35

integral represents the first term of this decomposition. This approximation is36

commonly used to compute transient radiation of spherical radiators [12–16],37

but the range of validity (in terms of geometrical configuration and wavenum-38

ber) is rarely specified.39

Only the case of spherical sources has been treated and only few studies con-40

cern the acoustic radiation of axisymmetric sources. Farn [17] proposed a41

numerical method based on source-density method (approximation of the ra-42

diating surface by triangular surface elements) and Guyomar [18] used series43

expansion of the source velocity spatial distribution. More recently, Stepan-44

ishen [19] adapted a mean-square error method to predict harmonic radiation45

of bodies of arbitrary shape but the radiation of transients remains a problem.46

Other numerical approaches using retarded potentials combined to boundary47

elements in the time domain have can also be found in the literature [20,21]48

and give appropriate results but calculation costs remain a problem.49

In the present study, a time-domain formulation is adopted to predict the50

modal sound radiation from axisymmetric sources with a nonuniform vibra-51
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tory distribution. The pressure field is approximated by the Rayleigh integral52

corresponding to a monopole source distribution over the nonplanar vibrating53

surface. The diffraction effects are neglected in the present approach and let for54

future work. The displacement field is expanded onto the linear modes of the55

structure and a change of variables in the Rayleigh integral is proposed in the56

case of a monotonic profile function to compute the Spatial Impulse Response57

associated to each mode of vibration efficiently. The results are compared to58

the exact formulation obtained in the case of planar sources [6] and to numer-59

ical results obtained by Suzuki and Tichy [22,23] with the spherical harmonics60

method in the case of spherical radiators. The method of calculation is then61

derived in the case of a typical loudspeaker profile (association of a truncated62

cone with a spherical cap). Finally, the present approach is used to estimate63

the nonlinear radiation pattern of a prototype loudspeaker and predictions are64

compared to measurements in anechoic room.65

2 TIME-DOMAIN RADIATION66

2.1 Geometry of the problem67

In the present study, attention is paid to the acoustic radiation of a baffled68

axisymmetric body S as represented in Fig. 1. Let a denote the external radius,69

h0(r) the axisymmetric profile function of the considered structure and hmax70

its depth (defined as the maximum of the profile function). The profile function71

only depends on the radial coordinate r since S is assumed axisymmetric. For72

the same reason, the observation point x depends on two coordinates (y, z) in73

the Cartesian space only. The profile function h0(r) is called monotonic if its74
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Fig. 1. Geometry of the considered structure. The points x and xs represent the

receiver and an integration point on the structure respectively. The profile function

is denoted by h0(r) and corresponds to the projection in the plane z = 0 of the uz

coordinate of the point xs.

derivative ḣ0(r) has a constant sign and called non-monotonic otherwise. A75

concave structure refers to a negative profile function h0(r) < 0 while a convex76

structure relates to a positive profile function. In the following equations, xS77

denotes a point of the structure with cylindrical coordinates (r, θ, h0(r)).78

2.2 Nonlinear vibration of loudspeaker-like structures79

Previous studies [2,5] mention that the nonlinear vibrations of loudspeaker-like

structure can be modeled using a nonlinear lumped parameters model coupled

with a nonlinear model of the diaphragm vibrations. This formulation allows

to include typical electrical nonlinearities that appear in the low frequencies

domain but also geometrical nonlinearities that appear around mechanical

resonances of the structure. The approach is based on an axisymmetric modal

decomposition of the displacement field of the structure:

w(r, t) =
∞∑

p=0

Φp(r)qp(t). (1)
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where the functions Φp(r) in Eq. (1) represent the modal shapes (that can

be either measured or calculated) and the functions qp(t) represent the time

function associated to mode p. Using a state-space formulation of the nonlinear

electromechanical problem[2], one obtains:

Ẏ = AY + B(Y )u(t) + NLe(Y ) + NLg(Y ) (2)

where Y is the state vector (time functions qp(t) and their first derivative80

q̇p(t)), A denotes the linear dynamics of the problem, B the excitation vec-81

tor, u(t) the input signal, NLe(Y ) and NLg(Y ) contain respectively all the82

electrical, mechanical and geometrical nonlinear terms of the electromechan-83

ical transduction. Eq. (2) is solved numerically using the fixed point method84

and Runge-Kutta algorithms, so that the global displacement field is obtained85

from the calculation of the state vector Y using modal reconstruction Eq. (1).86

This global nonlinear formulation describing the complex dynamics of a typ-87

ical loudspeakers needs to be directly solved in the time-domain. In order to88

compute the associated radiated sound pressure field for high amplitudes of89

vibration, a time-domain formulation of sound radiation from axisymmetric90

sources with a nonuniform vibratory distribution has to be adopted, as pre-91

sented below.92

2.3 Integral formulation93

The sound pressure field P (x, t) is solution of the well known Kirchhoff-

Helmholtz integral [24], that can be reduced to the Rayleigh’s integral when

considering weakly curved structures, i.e. for h0(r) ¿ a:

P (x, t) = ρ
∫ t

0

∫∫

S
G(x,xS, t, t′)

∂Vn(xS, t′)
∂t′

dxSdt′ (3)
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Using the axisymmetric modal decomposition Eq. (1), the Rayleigh’s integral

is directly computed in the time-domain by separating the space and the time

integration using the Spatial Impulse Response principle[19]:

P (x, t) = ρ
∫ t

0

∞∑

p=0

Hp(x, t, t′) q̈p(t
′) dt′, (4)

where the Spatial Impulse Response (S.I.R.) Hp associated to mode p is in-

troduced as follow:

Hp(x, t, t′) =
∫∫

S
G(x,xS, t, t′) Φp(xS)−→uz .

−−→
dxS. (5)

where −→uz .
−−→
dxS denotes the dot product between these 2 vectors. The analytical94

formulation of those functions can be obtained through an appropriate change95

of coordinates in the case of planar [19] or spherical structures [13]. However, in96

the general case, the direct calculation in the time-domain is not obvious due97

to the presence of the Dirac delta function. The following section proposes an98

appropriate change of variable in order to compute directly the S.I.R. functions99

for an axisymmetric source.100

3 CALCULATION OF THE RAYLEIGH INTEGRAL IN THE101

TIME-DOMAIN102

3.1 Geometrical considerations103

The aim of the following section is to simplify the calculation of the impulse104

response defined in Eq. (5). Geometrical considerations are firstly made in105

order to separate 3 areas of calculations where the properties of the sound106

pressure field differ. Then, a new local basis is proposed using those geomet-107
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xo = (0, ro) are solutions of:115

116

|x− xi| = min
(r, θ)

(|x− xS|) , (6a)

|x− xo| = max
(r, θ)

(|x− xS|) . (6b)

Let xh and xb denote the points located respectively at the top and at the117

bottom of the structure, as shown in Fig. 2. Depending on the structure and118

on the location of the receiver x, one can define 3 different zones defined in119

Tab. 1, where the radiation properties differ.120

zone Conditions on xi and xo

zone I xi 6= {xh,xb} and xo = {xh,xb}

zone II xi = {xh,xb} and xo = {xh,xb}

zone III xi = {xh,xb} and xo 6= {xh,xb}
Table 1

Definition of the 3 calculation zones.

3.2 Change of coordinates121

If the present section, the aim is to transform the integration variables of122

Eq. (5) by 2 variables |x−xS| and an angle φ that correspond to the geometry123

of the problem.124

Let θi denote the angle between axis uz and the line (xxi). A new local or-

thonormal basis Bi = ( ~tix, ~tiy, ~ni) centered on point xi is introduced, as pre-
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for the present example), the projection point and an integration point located on

the surface S, respectively.
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sented in Fig. 3. It is defined in the Cartesian basis Bc = ( ~ux, ~uy, ~uz) as follows:





−→ni = − sin θi ~uy − cos θi ~uz,

−→
tiy = cos θi ~uy − sin θi ~uz,

−→
tix = ~ux.

(7)

In this basis, a set of cylindrical coordinates is introduced for any point located

on the surface xS = (r2, φ) and the coordinates in the new local basis are

defined in appendix A. Introducing the tangent vectors to the surface
−−−−→
T|x−xS|

and
−→
Tφ with respect to the variables |x−xS| and φ (detailed in Appendix A),

the integration vector of Eq. (5) becomes in the new local basis[26]:

−−→
dxS =

(−→
Tφ ×−−−−→T|x−xS|

)
d|x− xS| dφ. (8)

where (.) × (.) denotes the cross product between 2 vectors. The expression

of tangent vectors and integration vector can be found in Appendix A. The

principle is to replace the integration vector in Eq.(5) by the new one defined

in Eq. (8) and to integrate over |x− xS| in order to eliminate the Dirac delta

function contained in the Green’s function (using the convolution theorem

[27]). Introducing the time delay τ = t− t′, one obtains the final formulation

of the Rayleigh integral:

P (x, t) = − ρc

2π

∫ t

0

∑
p

Hp(x, τ)q̈p(t− τ)dτ (9)

where:

Hp(x, τ) =
∫

φ

Φp(r)

FA + B cos φ− C sin2 φ

∣∣∣∣∣|x−xS|=cτ

dφ (10)
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and:




F = 1 +
dh0

dr

(
h0(r)− z

r

)
,

A =

(
1− (sin θi sin φ)2

cos θi

)
,

B =
(

Fri − y

r2

)
,

C =

(
dh0

dr

(
y

r

)
sin θi

)
.

(11)

In this expression, the Spatial Impulse Response explicitly depends on the125

profile function h0(r), the modal shape Φp(r) (also dependent on the shape126

of the source), the position of the receiver x and the integration time τ . The127

notation |x − xS| = cτ means that for each time τ , a distance |x − xS|/c128

is associated for computing the integrand of Eq. (10). In that case, for each129

time step τ , the intersection between the structure and the sphere centered130

on observation point x and of radius cτ is sought.131

This path (determined by the boundary values of integration path over φ)132

is unique in the case of a monotonic profile function (when the sign of ḣ0(r)133

is constant) and can be closed if φ = [0 : 2π] or open if φ = [φmin : φmax]134

depending on the location of the receiver, the shape of the structure and the135

integration time τ . The calculation of those boundaries and the application136

in the case of a spherical cap are expressed in Appendix B for each zone of137

calculation.138

The formulation of Eq. (10) allows to reduce the order of integration compared139

to Eq. (5): only one spatial coordinate on variable φ is required and since140

spatial and time-domain integration are separated, the spatial discretization141

is independent on the time step (and thus the maximal simulated frequency).142

In Fig. 4, the Spatial Impulse Response is computed for a hemispherical shell143
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Fig. 4. Spatial Impulse Responses in the case of a hemispherical transducer and for

a receiver located at (y, z) = (a, a). The exact solution of the Rayleigh’s integral in

the time-domaine derived from [13] is represented by points (◦ ◦ ◦) and the results

obtained using Eq. (10) in the case of different discretizations of the integral over φ

are represented by lines : 3 points (dashed light grey line), 6 points (dashed dark grey

line), 9 points (dashed black line) and 12 points (solid black line). The convergence

is ensured in any case with at less 20 points.

and a receiver located at (y, z) = (a, a) i.e. in the near-field region and for144

different discretization steps on variable φ in Eq. (10). The solutions in each145

case is compared to the solution of the Rayleigh integral [13] represented by146

points. It appears that less than 20 points for φ are required to attain a147

convergence error below 1% of the integral defined by Eq. (10).148
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4 VALIDATION149

4.1 Planar sources150

In the case of a planar structure, the profile function is equal to zero: h0(r) = 0.

In that case, Eq. (10) becomes [7]:

Hp(x, τ) =
∫

φ
Φp(r)||x−xS|=cτ dφ (12)

with the boundaries derived from Eq. (C.1) in Appendix B in accordance151

with the results of Harris [6] and Jensen[8]. The classical example [6] of Spa-152

tial Impulse Responses obtained for a planar piston with a uniform velocity153

distribution is shown in Fig. 5. In this figure, S.I.R. functions are calculated154

using an integral discretization of 20 points. The in-axis impulse response is155

equal to 1 in a compact support which means that the effect of radiation fil-156

ter is equivalent to a low pass filter whose cut-off frequency is determined by157

the size of the support of the Spatial Impulse Response. The off-axis response158

decreases with respect to the off-axis position y while its compact support in-159

creases. In that case, the radiation filter is also equivalent to a low pass filter160

whose cut-off frequency is below the the in-axis cut-off frequency. This result161

is general for axisymmetric structures : the radiation filter is equivalent to a162

low-pass filters whose cut-off frequency decreases with respect to the off-axis163

position y.164
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Fig. 5. Spatial Impulse Responses obtained in the case of a plane piston with an

uniform velocity distribution. The solutions are computed for a receiver located in

z = a and an off-axis position y from 0 to 5a and for 30 points of discretization in

Eq. (12).

4.2 Spherical sources165

In the present section, the approximated formulation of Eq. (9) is compared

to the numerical results obtained by Suzuki [22] using 40 spherical harmonics

in the wavenumbers domain, taking into account the diffraction effects. In the

case of spherical sources, the profile function h0(r) equals:





h0(r) =
√

R2 − r2 −√R2 − a2 for r < a,

h0(r) = 0 for r > a,

(13)

where R denotes the radius of curvature of the spherical shell and a the ex-166

ternal radius of the structure. In order to compare equivalent results in the167

frequency domain, one needs to take the Fourier transform of the Spatial Im-168

pulse Response computed using Eq. (10) in the case of a rigid body motion169
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(one mode of vibration: p = 1 and uniform displacement of the structure:170

Φp(r) = 1 for r < 1). In the work of Suzuki, the calculations are limited by171

the order of the spherical harmonics (40 for his study), so that his model is172

restricted to wavenumbers up to ka = 10. In the present formulation, only173

the time discretization of Spatial Impulse Responses influences the upper ka174

limit, so that no limitation of frequency range is observed. In practical cases,175

the Spatial Impulse Responses are computed using 20 nondimensionnalized176

time steps τ = tc/a and then completing with zeros, the precision in the177

wavenumbers domain is adaptable.178

The results are presented for 3 different structures: a planar piston, a spher-179

ical cap defined by a radius of curvature R = 1.5a and an hemispherical cap180

defined by a radius of curvature R = a. The Fourier Transform of the Spatial181

Impulse Responses computed for an on-axis receiver located in the far-field182

(y, z) = (0, 100a) are presented in Figs. 6 and 7 for concave and convex caps183

and a good agreement between the present approach and the results of Suzuki184

is obtained for low wavenumbers (ka < 1) and high wavenumbers (ka > 3).185

186

For low wavenumbers (ka < 1), the monopole approximation is valid and the187

equivalent radiation filter has a flat response. For high wavenumbers (ka > 3),188

the local curvature induces a decrease of the on-axis sound pressure level and189

the radiation filter is thus equivalent to a low-pass filter with a slope of -190

20 dB/decade above a cut-off wavelength depending on the curvature R of191

the profile and its radius a. In Figs. 6 and 7 the cut-off frequency of the192

equivalent low-pass filter decreases when the curvature radius R increases. This193

is explained by interferences phenomena that appears when the wavelength194

λ = 1/k is below the path difference between the nearest and the farther195
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Fig. 6. On-axis acoustic pressure (up: magnitude in dB, down: phase in degrees) in

far-field versus nondimensionalized wavenumber ka computed by Suzuki[22] (points)

and using Eq. (9) (lines). The results are presented for 3 different concave structures:

planar piston (black), medium spherical cap (dark grey) and hemispherical cap

(light gray). The wavenumbers domain results are obtained by taking the Fourier

transform of the Spatial Impulse Response computed in the time domain.
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far-field versus wavenumber ka computed by Suzuki[22] (points) and using Eq. (9)

(lines). The results are presented for 3 different convex structures: planar piston

(black), medium spherical cap (dark grey) and hemispherical cap (light gray).

point seen from the observer point as presented in Fig. 8. Thus the more the196

structure radius R is important, the more the difference path increases and197

the more the cut-off frequency of the equivalent low-pass filter decreases.198

Around ka = 1, the diffraction taken into account in the calculations of Suzuki199
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Fig. 8. Explanation of the interference phenomenon that appears when the wave-

length k is above the path difference between the nearest and the farther point seen

from the observer point. In the frequency domain, this effect is responsible for a

slope of the on-axis sound pressure level of -20 dB/decade and an extension of the

directivity compared to planar radiators.

[22] induces an increase of on-axis sound pressure level up to +6 dB in the200

case of concave caps (a decrease in the case of convex structures) that is not201

taken into account in the present model. The effect of diffraction appears in202

the non-dimensionnalized wavenumbers domain 1 < ka < 3 i.e. when the203

wavelength approaches the maximal depth of the structure. The influence of204

the diffraction is hardly dependent on the shape and the validity of the present205

approach is thus no longer viable in the wavelength range 1 < ka < 3.206

207

Figs. 9 and 10 represent the directivity patterns in linear scale computed for208

the considered spherical caps in the far-field (z = 100a) for wavenumbers such209

as ka = 1, ka = 3 and ka = 10. Again, the results obtained by taking the210

Fourier Transform of Eq. (10) are compared to results obtained by Suzuki211

[22]. For low wavenumbers (ka = 1) the radiation patterns are almost omni-212

directional and become more directive for high wavenumbers (ka > 3). The213

curvature extends the directivity in both convex and concave cases and in the214
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concave case, the maximum of sound pressure is obtained for a precise obser-215

vation angle depending on the curvature of the considered shell.216

217

In a general manner, the curvature (not necessarily in the case of a spherical218

shell) induces a decrease of on-axis sound pressure field due to interference for219

high wavenumbers. The effects of diffraction, not taken into account in the220

present model, are responsible for an increase of on-axis sound pressure level221

around 1 < ka < 3 in the case of concave sources (a decrease in the case of222

convex structures). The on-axis high wavenumbers losses due to interferences223

are compensated by an extent of directivity related to the local curvature of the224

source. This result is general for monotonic profile functions and is extended225

in the following section in the case of non-monotonic profile function and in226

the case of a typical loudspeaker shape.227

4.3 Complex sources228

The previous formulation is only valid for a monotonic profile function h0(r). In229

the case of a nonmonotonic profile, i.e. when the sign of ḣ0(r) is not constant,230

the integration path (intersection between the sphere centered on observation231

point x and of radius cτ used in the calculation of Eq. (10)) is made of mul-232

tiple paths corresponding to each monotonic part of the global profile.233

234

Neglecting the multiple reflections over the emissive surface, the global radia-

tion can be expanded as the sum of contributions of each monotonic portion

of the profile. For example, for a global structure composed by 2 monotonic
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Fig. 9. Directivity functions (using a linear scale) for the 3 different concave caps:

plane piston (black), medium spherical cap (dark grey) and hemispherical cap (light

gray). The results obtained by the present model (right) are compared to the results

obtained by Suzuki [22] (left) for 3 wavenumbers: ka = 1 (up), ka = 3 (middle) and

ka = 10 (bottom).
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Fig. 10. Directivity functions (using a linear scale) for the 3 different convex caps:

plane piston (black), medium spherical cap (dark grey) and hemispherical cap (light

gray). The results obtained by the present model (right) are compared to the results

obtained by Suzuki [22] (left) for 3 wavenumbers: ka = 1 (up), ka = 3 (middle) and

ka = 10 (bottom).
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profiles S = S1
⋃

S2, we have:

P (x, t) = − ρc

2π

∑
p

(∫ t

0
H1

p(x, τ1)q̈p(t− τ1)dτ1

+
∫ t

0
H2

p(x, τ2)q̈p(t− τ2)dτ2

) (14)

where Hi
p(x, τ1) corresponds to the Spatial Impulse Response of mode p asso-

ciated to the ith monotone part of the profile. This procedure is applied in the

case of a typical loudspeaker shape composed as the junction of a truncated

cone with a spherical cap. The profile function is then described by:





h0(r) = α(b− a) +
√

R2 − r2 −√R2 − b2 for r < b,

h0(r) = α(r − a) for r > b,

h0(r) = 0 for r > a,

(15)

where R denotes the curvature of the inner spherical shell, b the radius of the235

junction between both sub-structures and α the depth of the truncated coni-236

cal shell. The following results are obtained for a typical loudspeaker α = 1,237

b = 0.5a and R = 1.5b. The profile function and the principle of calculation238

of the on-axis Spatial Impulse Response are presented in Fig. 11 and the on-239

axis result in the nondimensionalized wavenumbers domain ka is displayed in240

Fig. 12 taking the Fourier Transform of computed time function.241

242

In Fig. 11, the respective contribution of each sub-structure in the time-domain243

for an on-axis receiver is represented. In the frequency domain, the global ra-244

diation filter is as previously equivalent to a low-pass filter whose cut-off fre-245

quency is not only related to the depth of the truncated conical shell. Indeed,246

between ka = 1 and ka = 10 in Fig. 12, the comparison between the response247
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Fig. 11. Calculation procedure of the Spatial Impulse Response of a typical loud-

speaker (junction of a cone and a spherical cap) for an uniform velocity distribution

and for a on-axis receiver located in z = a. The S.I.R. corresponding to the spherical

cap H1(x, τ) is represented by a dashed black line, the S.I.R. corresponding to the

truncated cone H2(x, τ) is represented by a dashed grey line and the global S.I.R.

corresponds to the solid black line.

of the truncated conical shell only and the global structure shows that the cut-248

off frequency is increased when the inner spherical cap is present. The effect of249

the convex spherical cap compensate the interference effect around ka = 1 and250

an extension of the flat acoustic response is achieved and a global increase of251

+3dB with respect to the conical source is observed in the interference regime.252

253

The contribution of the inner cap appears in the tail of the Impulse Response254

and is also responsible for high wavenumber comb-filtering (for ka > 10) that255

is not present in absence of the inner spherical cap (see Fig. 12). Around256

ka = 25, a decrease of 10dB with respect to the conical source is observed257
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Fig. 12. On-axis acoustic pressure level (magnitude in dB versus wavenumber ka)

obtained in the case of a loudspeaker (junction of a truncated cone and an hemi-

spherical cap). The solution (solid black line) is compared to the truncated cone

radiation only (dashed grey line). The use of a typical loudspeaker profile increases

the low-pass filter cut-off frequency and induces oscillations in the on-axis acoustic

pressure level, due to complex interference phenomena.

and can be interpreted as interferences between the conical and the spherical258

cap because this phenomenum is not present in the case of a spherical shell259

only neither a conical shell only as presented on Fig. 12. This effect is then260

amplified above ka = 25 and is responsible for comb filtering at multiples of261

that nondimensionalized wavenumber ka = 25, ka = 50 and ka = 75.262
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5 APPLICATION TO A PROTOTYPE OF LOUDSPEAKER263

5.1 Presentation264

In order to illustrate the influence of the diaphragm shape of a loudspeaker on265

its acoustical response for high amplitudes of vibration, a prototype of loud-266

speaker has been developed by G. Lemarquand in the LAUM [25] as presented267

on Fig. 13. Its moving part is an aluminium convex spherical shell of 50 mm of268

diameter. Experiments have been done with a curvature equals to a/R = 0.3269

which is defined as the ratio between the external radius and the radius of270

curvature of the shell. For the prototype, the moving part is not made in one271

piece, since the emissive surface is glued on the supporting cylinder.272

273

Fig. 13. Photography of the studied prototype in anechoic room.

In the studied prototype, attention is paid to the motor and suspensions, in274

order to minimize the ”electrical” nonlinear phenomena. The sources of non-275

linearities in the motor are the variations of the fore factor (Bl), and the276

Eddy currents. As a remedy to these defects, an ironless motor was used,277
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which is made only out of neodymium iron boron permanent magnets. The278

classical suspensions of loudspeakers are mostly made of rubber, impregnated279

fabric or molded plastic. They act as a spring, but have a nonlinear behavior.280

This means that their compliance depends on the movements amplitude and,281

above all, that the induced damping depends greatly on both amplitude and282

frequency. These phenomena are the sources of the classical nonlinear behavior283

of the loudspeakers suspensions at low frequencies. In the studied prototype,284

the almost perfect compressibility properties of the air were used to create a285

pneumatic stiffness. Indeed, the air is compressed in the closed box, whose286

volume tunes the stiffness value. The cabinet is thus a cylindrical pipe which287

is closed and filled up with an absorbing material. Classical electrical nonlin-288

earities are thus not observed in the present prototype and only geometrical289

nonlinearities remain and are due to large amplitudes of vibration of the mov-290

ing part. This kind of nonlinearities has been pointed out mechanically but the291

influence on the radiated sound pressure field had not been cleared explained.292

293

5.2 Electromechanical characterization294

The first step of the experimental analysis consist in understanding and mod-295

eling the electromechanical behavior of the prototype. Fig. 14 represents the296

impedance curves in both magnitude. Below 1 kHz, the behavior is mostly re-297

sistive and become inductive above 2 kHz. As mentioned above, the inductive298

part is not modified by eddy currents, due to the ironless conception of the299

motor, and then a linear dependency of impedance magnitude with respect300

to frequency is observed (not observable on Fig.14 because of the logarithmic301
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scale for the frequencies).302
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Fig. 14. Electrical impedance of the loudspeaker in magnitude (up) and phase

(down).

However, the impedance curves are affected by resonances (amplification of304

certain frequencies and perturbation in the phase curve) of different parts of305
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the prototype. Two tendencies are easily identified on Fig. 14 :306

307

• for frequencies below 5 kHz, the resonances are due to stationary waves in308

the rear cavity : the first resonance is around 70 Hz. Under this assumption,309

the vibration pattern is then assimilated to a plane piston (rigid body mode).310

311

• for frequencies above 9 kHz, the resonances correspond to mechanical reso-312

nances of the spherical cap, as described in the following part. The properties313

of those resonances (eigenfrequencies, modal damping, excitation and shapes)314

have been analyzed using Laser Doppler Velocity and a linear modal analysis315

software (IDEAS c©) and are presented on Tab. 2.316

317

5.3 Nonlinear radiation : on-axis response318

For high amplitudes of vibration, nonlinearities appear and give rise to har-319

monic distortion in the velocity and sound pressure signals. Due to the ironless320

conception of the motor, the electrical nonlinearities classically observed in321

electrodynamic loudspeakers vanish and only geometrical nonlinearities (due322

to large deformations of the moving part) remain.323

324

This type of nonlinearities can be modeled using the modal formulation pro-325

posed in [5]. This approach is absolutely suitable in the present case, since326

few modes radiate in the audible range. The principle is to model the proto-327

type as a 4 degrees of freedom system (since 4 modes radiate in the audible328
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Mode Resonance Modal Excitation Modal

p Frequency(Hz) Damping(%) Vector Shape Φp

1 73 100 1

2 9650 3.2 20

3 17290 0.6 2

4 18550 0.6 0.8

Table 2

Axisymmetric modal parameters (eigenfrequency fp, modal damping µp and exci-

tation Tp associated to mode p) measured for the spherical dome. The first mode

corresponds to a piston mode (rear cavity resonance) and is very damped compared

to the structural modes (above 9 kHz).
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range, as presented in Tab. 2) and to include geometrical nonlinearities in329

the modal equations through cubic and quadratic nonlinearities [2]. In order330

to illustrate the typical effects of geometrical nonlinearities on radiation of331

the prototype, only quadratic and cubic nonlinearity terms have been added332

for the second mode of vibration (at 9650 Hz). The displacement field is cal-333

culated for high amplitudes of vibrations using the State-Space formulation334

described by Eq. (2), and the radiation problem is solved using the Spatial335

Impulse Response (S.I.R.) approach developed in the present study. In this336

practical case, the measured modal shapes Φp(r
′) and profile function h0(r

′)337

are introduced in Eq. (10) and convolutions are performed at the sampling338

frequency of 48 kHz. It is important to notice that the calculations of the339

displacement field and radiated sound pressure are computed directly in the340

time-domain and the results are presented in the frequency domain for clarity341

(taking the Fourier transform of the transient responses).342

343

Fig. 15 represent the on-axis sound pressure measurement and prediction at344

1 m of the fundamental and of the harmonics 2 and 3 in the case of the345

convex spherical dome. Measurements have been performed in anechoic room346

(approximate size 1000m3) using sinusoidal input signals. A good agreement347

is observed in the audible bandwidth and the geometrical nonlinearities are348

correctly predicted around discrete frequencies such as :349

350

• f = fa : around a mechanical resonance frequency, the amplitude of vi-351

bration increases and harmonics are generated. For example, on figure 15,352

harmonics 2 and 3 are generated for an excitation frequency around 9.6kHz353

(first mechanical resonance).354
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Fig. 15. Measurement (points) and prediction (solid lines) of on-axis sound pressure

level for a 10 W input. For each frequency, the energy of fundamental (black) and

harmonics 2 (dark grey) and 3 (light grey) are measured and predicted.

355

• f = fa/p with p integer : for the submultiple p of a resonance frequency, the356

frequency of harmonic p corresponds to an eigenfrequency and this harmonic357

is then amplified. For example, on Fig. 15, an increase of harmonic 3 at 3.2358

kHz which corresponds to a third of the first mechanical resonance is observed359

(the same effect appears with harmonic 2 at 4.8 kHz).360

361

The Spatial Impulse Response appear to model efficiently the complex radia-362

tion pattern for high amplitudes of vibration. The influence of the geometrical363

nonlinearities on the acoustic response of the prototype has been observed ex-364

perimentally and modeled properly using the present approach. Other sources365

of nonlinearities could also be taken into account in order to predict the non-366

linear acoustic response of classical loudspeakers.367
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6 CONCLUSIONS368

In order to compute acoustic radiation from axisymmetric structures sub-369

jected to large amplitude motion, an explicit integral formulation is derived370

for predicting the modal time-domain radiation. The radiated acoustic pres-371

sure is assumed to be expressed as an integration of a simple source distri-372

bution (Rayleigh integral), which is valid except in the nondimensionalized373

wavenumber range 1 < ka < 3 because the diffraction effects are neglected374

in the present study and will be detailed in a future work. The displacement375

is expanded onto the linear modes of the structure and the acoustic pressure376

is expressed as a sum of modal contributions, by introducing the Spatial Im-377

pulse Responses depending on the shape of the source, the position of the378

receiver and the modal shapes (also dependent of the shape of the source).379

The solution is compared to the literature in the cases of a piston and of spher-380

ical caps and gives quite good results and low calculation costs compared to381

frequency-domain formulations. In a general way, the radiation induces a low-382

pass filtering whose cut-off frequency is related to the radius of the source383

and the local curvature. The method is extended for predicting the radiation384

of an axisymmetric source whose profile function is complex and corresponds385

to a typical loudspeaker shape. Finally, predictions and experimental mea-386

surements of on-axis radiation of a prototype loudspeaker subjected to large387

amplitudes motion are compared and a good agreement is achieved on the388

audible bandwidth.389

390
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A Definition of the new local basis391

In the new local basis Bi = ( ~tix, ~tiy, ~ni), the coordinates of point xS are defined

by:

−−→xixS =

(
h0(ri)− h0(r)

cos θi

− r2 cos φ tan θi

)
−→ni

+ r2 cos φ
−→
tiy + r2 sin φ

−→
tix.

(A.1)

where r2 is defined by the Cartesian coordinates of integration point xS =

(x, y):

r2
2 = x2 + cos2 θi [y − ri − (h0(r)− h0(ri)) tan θi]

2 . (A.2)

Under those considerations, the tangent vectors to the surface
−−−−→
T|x−xS| and

−→
Tφ

with respect to the variables |x− xS| and φ are described by:





−−−−→
T|x−xS| =

∂−→xS.−→ux

∂|x− xS|
−→ux +

∂−→xS.−→uy

∂|x− xS|
−→uy +

∂−→xS.−→uz

∂|x− xS|
−→uz ,

−→
Tφ =

∂−→xS.−→ux

∂φ
−→ux +

∂−→xS.−→uy

∂φ
−→uy +

∂−→xS.−→uz

∂φ
−→uz ,

(A.3)

B Change of variable392

One point located in the integration surface S is parameterized in the Carte-

sian basis by its 3 coordinates xS = (x, y, h0(
√

x2 + y2)). In order to compute

the tangent vectors expressed in Eq. (A.3), one needs to express the depen-
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dency of |x− xS| and φ with respect to those 3 coordinates:





∂x

∂|x− xS| =
|x− xS|

Fx

∂y

∂|x− xS| =
|x− xS|
Fy − r

,

(B.1)





∂x

∂φ
= r2

(
cos φ + sin φ

Fx

Fy − r
(cos θi − C)

+
dh0

dr
sin φ sin θi

x

r

)−1

∂y

∂φ
=

−Fx

Fy − r

(
∂x

∂φ

)
,

(B.2)

and:

∂h0(r)

∂?
=

dh0(r)

dr

(
x

r

(
∂x

∂?

)
+

y

r

(
∂y

∂?

))
, (B.3)

so that the change of variables in Eq.(8) leads to:

−→uz .
−−→
dxS =

(
2|x− xS|

FA + B cos φ− C sin2 φ

)
d|x− xS|dφ, (B.4)

where F , A, B and C are defined in Eq. (11).393

C Boundary values of integration394

Depending on the zone of calculation, the boundaries of integration in Eq. (10)

differ and the integration has to be computed on a closed or an open path (an

example of the two cases is represented on Fig. C.1. Tab. C.1 describes the

different integration paths depending on the integration time τ and receiver

position x .

In the case of open contours, the boundaries are defined by the value of φm
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zone Conditions on x and τ Contour Integration over φ

I |x− xi| < cτ < |x− xh| Closed [0 : 2π]

|x− xh| < cτ < |x− xb| Open [φm : 2π − φm]

II |x− xh| < cτ < |x− xb| Open [φm : 2π − φm]

III |x− xh| < cτ < |x− xb| Open [−φm : φm]

|x− xb| < cτ < |x− xi| Closed [0 : 2π]

Table C.1

Definition of the integration contours depending on the zone, receiver location x and

integration time τ = |x − xS|/c. For open contours, the boundary are determined

by φm defined in Eq. (C.1).

determined in Eq. (C.1) which corresponds to the angle of intersection of the

outer edge of the structure with a sphere centered on x and of radius cτ :

φm = arccos




(
1 +

((cτ)2 − z2 − (y − a)2) ((cτ)2 − z2 − (y + a)2)

cos2 θi ((cτ)2 − z2 − y2 − a2 + 2yri + 2r(h0(ri)) tan θi)
2

)−1/2

 .

(C.1)

In the case of an observation point located in the zone I, the intersection start395

by impact point xi when cτ = |x− xi| then the contour is closed (integration396

over φ = [0 : 2π]) as presented in Fig. C.1 (up) until cτ = |x − xh| then the397

integration path is open (integration over φ = [φm : 2π− φm]) as presented in398

Fig. C.1 (down) until cτ = |x− xb|.399
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Fig. C.1. Example of a closed contour (left) and an open contour (right) of inte-

gration in the case of a spherical cap and a receiver x located in the zone I. The

integration path corresponds to the intersection of the structure with a sphere of

radius cτ centered on x.
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List of Figures471

1 Geometry of the considered structure. The points x and472

xs represent the receiver and an integration point on the473

structure respectively. The profile function is denoted by h0(r)474

and corresponds to the projection in the plane z = 0 of the uz475

coordinate of the point xs. 7476

2 Definition of the 3 different areas of calculation. For each477

position of the receiver, the associated points xi (dotted lines)478

and xo (dashed lines) are represented . The zones I and III479

only are defined in front and in back of a convex structure480

respectively. The intersection point F of the 3 zones is called481

the sweet spot (or geometrical focal point). 11482

3 Definition of the new local basis Bi = ( ~tix, ~tiy, ~ni) and the483

new coordinates (r2, φ). The points x, xi and xS denote484

the observation point (located in the zone I for the present485

example), the projection point and an integration point486

located on the surface S, respectively. 11487
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4 Spatial Impulse Responses in the case of a hemispherical488

transducer and for a receiver located at (y, z) = (a, a). The489

exact solution of the Rayleigh’s integral in the time-domaine490

derived from [13] is represented by points (◦◦◦) and the results491

obtained using Eq. (10) in the case of different discretizations492

of the integral over φ are represented by lines : 3 points493

(dashed light grey line), 6 points (dashed dark grey line), 9494

points (dashed black line) and 12 points (solid black line). The495

convergence is ensured in any case with at less 20 points. 14496

5 Spatial Impulse Responses obtained in the case of a plane497

piston with an uniform velocity distribution. The solutions498

are computed for a receiver located in z = a and an off-axis499

position y from 0 to 5a and for 30 points of discretization in500

Eq. (12). 16501

6 On-axis acoustic pressure (up: magnitude in dB, down: phase502

in degrees) in far-field versus nondimensionalized wavenumber503

ka computed by Suzuki[22] (points) and using Eq. (9) (lines).504

The results are presented for 3 different concave structures:505

planar piston (black), medium spherical cap (dark grey) and506

hemispherical cap (light gray). The wavenumbers domain507

results are obtained by taking the Fourier transform of the508

Spatial Impulse Response computed in the time domain. 18509
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7 On-axis acoustic pressure (up: magnitude in dB, down: phase510

in degrees) in far-field versus wavenumber ka computed by511

Suzuki[22] (points) and using Eq. (9) (lines). The results512

are presented for 3 different convex structures: planar piston513

(black), medium spherical cap (dark grey) and hemispherical514

cap (light gray). 19515

8 Explanation of the interference phenomenon that appears516

when the wavelength k is above the path difference between517

the nearest and the farther point seen from the observer point.518

In the frequency domain, this effect is responsible for a slope519

of the on-axis sound pressure level of -20 dB/decade and an520

extension of the directivity compared to planar radiators. 20521

9 Directivity functions (using a linear scale) for the 3 different522

concave caps: plane piston (black), medium spherical cap523

(dark grey) and hemispherical cap (light gray). The results524

obtained by the present model (right) are compared to the525

results obtained by Suzuki [22] (left) for 3 wavenumbers:526

ka = 1 (up), ka = 3 (middle) and ka = 10 (bottom). 22527

10 Directivity functions (using a linear scale) for the 3 different528

convex caps: plane piston (black), medium spherical cap (dark529

grey) and hemispherical cap (light gray). The results obtained530

by the present model (right) are compared to the results531

obtained by Suzuki [22] (left) for 3 wavenumbers: ka = 1 (up),532

ka = 3 (middle) and ka = 10 (bottom). 23533
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11 Calculation procedure of the Spatial Impulse Response of a534

typical loudspeaker (junction of a cone and a spherical cap)535

for an uniform velocity distribution and for a on-axis receiver536

located in z = a. The S.I.R. corresponding to the spherical537

cap H1(x, τ) is represented by a dashed black line, the S.I.R.538

corresponding to the truncated cone H2(x, τ) is represented539

by a dashed grey line and the global S.I.R. corresponds to the540

solid black line. 25541

12 On-axis acoustic pressure level (magnitude in dB versus542

wavenumber ka) obtained in the case of a loudspeaker543

(junction of a truncated cone and an hemispherical cap).544

The solution (solid black line) is compared to the truncated545

cone radiation only (dashed grey line). The use of a typical546

loudspeaker profile increases the low-pass filter cut-off547

frequency and induces oscillations in the on-axis acoustic548

pressure level, due to complex interference phenomena. 26549

13 Photography of the studied prototype in anechoic room. 27550

14 Electrical impedance of the loudspeaker in magnitude (up)551

and phase (down). 29552

15 Measurement (points) and prediction (solid lines) of on-axis553

sound pressure level for a 10 W input. For each frequency, the554

energy of fundamental (black) and harmonics 2 (dark grey)555

and 3 (light grey) are measured and predicted. 33556
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C.1 Example of a closed contour (left) and an open contour (right)557

of integration in the case of a spherical cap and a receiver x558

located in the zone I. The integration path corresponds to559

the intersection of the structure with a sphere of radius cτ560

centered on x. 38561
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List of Tables562

1 Definition of the 3 calculation zones. 10563

2 Axisymmetric modal parameters (eigenfrequency fp, modal564

damping µp and excitation Tp associated to mode p) measured565

for the spherical dome. The first mode corresponds to a piston566

mode (rear cavity resonance) and is very damped compared to567

the structural modes (above 9 kHz). 31568

C.1 Definition of the integration contours depending on the zone,569

receiver location x and integration time τ = |x − xS|/c. For570

open contours, the boundary are determined by φm defined in571

Eq. (C.1). 37572
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