Skip to Main content Skip to Navigation
Journal articles

Characterization of the kernel of the operator CURL CURL

Philippe G. Ciarlet 1 Patrick Ciarlet 2 Giuseppe Geymonat 3 Françoise Krasucki 3
2 POEMS - Propagation des Ondes : Étude Mathématique et Simulation
Inria Saclay - Ile de France, UMA - Unité de Mathématiques Appliquées, CNRS - Centre National de la Recherche Scientifique : UMR7231
Abstract : In a simply-connected domain Ω in R3, the kernel of the operator CURLCURL acting on symmetric matrix fields from L2s (Ω) to H−2 s (Ω) coincides with the space of linearized strain tensor fields. For not simply-connected domains, Volterra has characterized this kernel for smooth fields. Here we extend this result for domains with a Lipschitz-continuous boundary for fields in L2s (Ω). To cite this article: P.G. Ciarlet et al., C. R. Acad. Sci. Paris, Ser. I 344 (2007). © 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
Document type :
Journal articles
Complete list of metadata
Contributor : Lmgc Aigle Connect in order to contact the contributor
Submitted on : Thursday, April 7, 2011 - 10:47:25 AM
Last modification on : Friday, December 3, 2021 - 11:34:05 AM



Philippe G. Ciarlet, Patrick Ciarlet, Giuseppe Geymonat, Françoise Krasucki. Characterization of the kernel of the operator CURL CURL. Comptes Rendus. Mathématique, Académie des sciences (Paris), 2007, 344 (série I), pp.305-308. ⟨10.1016/j.crma.2007.01.001⟩. ⟨hal-00583961⟩



Les métriques sont temporairement indisponibles