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Multi-scale features of turbulent flames near a wall display two kinds of scale-dependent fractal features. In scale-space, an unique 

fractal dimension cannot be defined and the fractal dimension of the front is scale-dependent. Moreover, when the front 
approaches the wall, this dependency changes: fractal dimension also depends on the wall-distance. Our aim here is to propose a 

general geometrical framework that provides the possibility to integrate these two cases, in order to describe the multi-scale structure of 
turbulent flames interacting with a wall. Based on the scale-entropy quantity, which is simply linked to the roughness of the front, we 

thus introduce a general scale-entropy diffusion equation. We define the notion of ‘‘scale-evolutivity’’ which characterises the 

deviation of a multi-scale system from the pure fractal behaviour. The specific case of a constant ‘‘scale-evolutivity’’ over the scale–
range is studied. In this case, called ‘‘parabolic scaling’’, the fractal dimension is a linear function of the logarithm of scale. The case of a 

constant scale-evolutivity in the wall-distance space implies that the fractal dimension depends linearly on the logarithm of the wall-
distance. We then verified experimentally, that parabolic scaling represents a good approximation of the real multi-scale features of 
turbulent flames near a wall.

1. Introduction

In this paper, we present a new geometrical framework in order to describe the multi-scale structure of a turbulent
reactive front in the vicinity of a wall. The first part of the paper consists of a theoretical presentation; the second part
represents an experimental illustration and verification. There are very few studies concerning the multi-scale structure of
a turbulent front in the vicinity of a wall. Let us quote the work by Nicolleau [1] dealing with the dispersion, by a turbulent
field, of a passive scalar near a wall. Fractal dimension has been shown to be dependent on the wall distance. Recently,
Foucher et al. [2,3] performed a multi-scale analysis of turbulent flames, looking for the influence of the wall on the multi-
scale features. They also found that the fractal dimension depends on the wall distance. Even far from the wall, the exact
multi-scale structure of a turbulent flame and, more generally of a turbulent interface, is still an open problem. Let us recall
that, to define a fractal dimension 1F, one should have a scale–range large ‘‘enough’’ where the number N[li] of balls of

size li needed to cover the front (‘‘box-counting method’’) follows a power law, such as N[li] ∼ l
−1F
i . Nevertheless, the

slope is usually determined over a limited scale–range (often less than one decade and for large scales, close to the integral
scale). Moreover, it finally appeared that, the fractal dimension of turbulent fronts (passive or reactive) is paradoxically scale
dependent [4–6]. Such a quite general behaviour calls for a more general description of multi-scale systems than pure scale
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invariance, and for a reinterpretation of the measured fractal dimension 1F. That is why the concept of scale-entropy has
been introduced in the context of entropic-skins theory [7]. Recently, it has been shown that this framework can be used to
derive the turbulent velocity of a flame as a function of ratio U′/UL [8].

Our paper has the ambition to propose a new geometrical framework, in order to clarify and to describe twomain aspects
of themulti-scale features of a turbulent flamenear awall: the scale-dependency of the fractal dimension and its dependency
on thewall distance. Ourwork is based on the fundamental idea that a complex phenomenon, such as turbulent combustion
can be described by a specific and dynamical scale construction. Such an idea is also developed in constructal theory [9] and
leads to a powerful method to determine optimized multiscale configurations in a wide variety of physical systems. In
the context of entropic-skins geometry, introducing the concept of scale-entropy and scale-evolutivity, we will propose a
diffusion equation for scale-entropy which describes the multi-scale features of a flame as a function of scale and of wall
distance.

2. Characteristic scales: The scale-space and the wall-distance space

First of all, let us introduce the characteristic scales involved in the double interaction of a flame with turbulence and
with a wall and let us give their order of magnitude. A flame displays a thickness δ, which constitutes the place where
the combustion occurs. It mainly depends on the mixture. In the so-called ‘‘flamelet regime’’, the length-scales and the
time-scales of turbulence are larger than the flame thickness and the chemical time. The front is just wrinkled and it is not
internally modified. The turbulent flow, following Kolmogorov’s theory [10], can be characterised by a hierarchy of vortices,
ranging from the integral scale l0 to Kolmogorov scale η. The turbulence-flame interaction is characterised by a hierarchy of
length-scales wrinkling the flame.We define the inner cut-off scale lc as the smallest size of wrinkling produced on the front
and the outer cut-off lM as the largest size of wrinkle, beyond which, the front is Euclidean. It has been shown that a good
order of the magnitude of the internal cut-off scale corresponds to twice a Kolmogorov scale, calculated for burnt gases [6,

8]: lc = 2ηBG with ηBG = (ν3
BG/ε)

1/4 where ε = U ′3/l0 represents the rate of energy dissipation of turbulence and νBG the
kinematic viscosity of burnt gases. Its order of magnitude is in our experiment lc ≈ 0.2mm. The outer cut-off scale depends
on the global configuration, and, mainly, the size of the front [2]: we obtained experimentally lM ≈ 11 mm. The wrinkling
on the flame results from two sorts of scales. The first scale–range is due to turbulence itself, whose integral scale is noted
l0 and the Kolmogorov scale η: in our experiment, we have l0 ≈ 2mm and η ≈ 15µm. The second scale–range comes from
the large scale motions of the flow which is mainly due to cyclic fluctuations. Finally, the flame interacting with the wall
leads to the quenching scale dc that is the distance belowwhich the flame quenches when it approaches the wall. This scale
results mainly from the heat losses at the wall but, in a turbulent configuration, it is linked to the wall-turbulence-flame
interaction in a complex way. In the experiments used for this paper, its order of magnitude is dc ≈ 0.1 mm.

We will thus work here with two kinds of length scales. (i) The first one is the scale of a wrinkle created on the front by
turbulent flow. This scale noted li belongs to the range [lc; l0]; (ii) The second kind of scale is themeanwall distance denoted
dd, where the flame is located with the assumption that one can define a mean wall distance. Working on the influence of
the wall-distance relative to the scale–range [lc; l0], we are especially interested by values of wall-distance belonging to
the wall-distance range [lc; l0]. The first kind of scale will be said to belong to scale-space, and the second one to the wall-
distance space.

3. Roughness, occupation volume, and scale-entropy of a turbulent flame

To facilitate the reading of this paper, it is useful to present the main geometrical quantities we will use. Let us consider
a turbulent flame wrinkled over a scale range [lc; l0]. We will define here, the main geometrical quantities needed for our
study. Let us consider a varying scale li in this scale–range. In order to define the spatial extension of the flame at this
scale, we define, in the spirit of box-counting method, Ni,0 as the minimum number of balls necessary to cover the front
contained in a scale l0. Using this quantity, it is possible to define the turbulent surface due to the scale range [li; l0] by
ST[li; l0] = N[li; l0]l2i which implies a roughness

6[li; l0] = ST[li; l0]/l20 = N[li; l0](li/l0)2. (1)

The volume occupied by the front at the scale li is thus V[li; l0] = N[li; l0]ldEi , where dE is the embedding dimension with

here dE = 3. This set can be defined by its volume fraction f[li; l0] = V[li; l0]/l30 or by the number W[li; l0] = 1/f[li; l0] of
sets needed to fill the whole volume. In this paper, we will thus use the scale-entropy defined by

S[li; l0] = ln(W[li; l0]) with W[li; l0] = l30/V[li; l0]. (2)

Using this quantity, we can express the roughness that results from the effect occurring on the front of the scales in
[lc; li]. For this purpose, we determine the total roughness 6[lc; l0] = ST[lc; l0]/l20 = N[lc; l0](lc/l0)2. Using the property of
roughness multiplicativity 6[lc; li]6[li; l0] = 6[lc; l0], we can deduce 6[lc; li] from 6[li; l0] through the measurement of
N[li; l0]. Roughness and scale-entropy are simply linked by the following expression:

S[li; l0] + ln(6[li; l0]) = ln(l0/li). (3)
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Fig. 1. Twoways to measure to measure the mean roughness 6[lc; li] of a front in a ball of size li . (i) The front is covered by the minimum number N[li; l0]
of balls (box-counting method) of size li needed to cover the domain of global size l0; this leads to the roughness 6[li; l0] = N[li; l0](li/l0)2 due to the
scale–range [li; l0]. Due to multiplicativity of roughness, we have 6[lc; li] = 6[lc; l0]/6[li; l0]. (ii) We take a particular ball in which the flame surface s
is computed, the local roughness is σ[lc; li] = s/l2i . This local roughness vary along the front, and can be used to study roughness fluctuations. To have the
mean roughness 6[lc; li], an average is done over all the balls: 〈σ[lc; li]〉 = 6[lc; li].

In order to facilitate the presentation of the experimental results in the second part of the paper, let us make three
remarks.

(i) The box-counting method based on the measurement of N[li; l0] (leading to N[lc; li] using roughness multiplicativity)
gives access to a mean roughness 6[lc; li] but, due to some experimental constraints, one needs to define a local roughness
over the front (Fig. 1). In a ball of size li, if s represents the surface of the front in this ball, then σ[lc; li] = s/l2i is the local
roughness in the ball of size li. Averaging this local quantity over the front (i.e. calculating an average on all the balls of size
li which are necessary to cover the front), allows one to recover the mean roughness, we have: 6[lc; li] = 〈σ[lc; li]〉. Two
methods can thus be used to measure roughness: the first, given by ‘‘box-counting method’’, has a global character in the
sense that it directly provides a mean roughness; the second is ‘‘local’’, since it first consists of measuring the roughness
locally and then to average it over the front, to obtain the mean roughness. This method is particularly interesting if one
wants to characterize and study roughness fluctuations. There is a direct link between the roughness 〈σ[lc; li]〉 (= 6[lc; li])
measured by the local method, and the one measured by the box-counting method 6[li; l0]. Due to the multiplicativity
property of roughness, we have the expression6[lc; li]6[li; l0] = 6[lc; l0]. Hence, 1/6[lc; li] = (1/6[lc; l0])N[li; l0](li/l0)2.
Measuring 6[lc; li] and representing 1/6[lc; li] gives access to the quantity N[li; l0] usually measured by box-counting

method. In the specific case of fractality i.e. N[li; l0] ∼ l
−1F
i we thus have 1/6[li; l0] ∼ l

2−1F
i .

(ii) The experimental data are, in fact, composed by two-dimensional photographies of flames obtained by tomography
images using Planar-Laser-Induced-Fluorescence. We thus need to define a linear roughness. If N2D[li; l0] is the number
of disks of diameter li needed to cover the front, the linear roughness is 3[li; l0] = LT[li; l0]/l0 = N2D[li; l0](li/l0) where
LT[li; l0] represents the length of the two-dimensional turbulent flame. As explained previously, for surface roughness, apart
from the box-counting method, it is possible to measure the roughness by a second way. We can also determine roughness
by measuring it locally on a ball of size li which gives a local quantity λ[lc; li]; averaging over the front leads to the mean
linear roughness 3[lc; li] = 〈λ[lc; li]〉 with the relation:

1/3[lc; li] = (1/3[lc; l0])N2D[li; l0](li/l0). (4)

For the specific case of a fractal object, we have 1/3[lc; li] ∼ l
1−1F,2D

i , where 1F,2D is the fractal dimension measured in
a two-dimensional space. Assuming that the front is homogeneous and isotropic in the zone of its brush, we assume here
that the two-dimensional cut of a tridimensional flame displays the same statistical and multi-scale properties leading to
1F = 1 + 1F,2D. We can therefore study 3[lc; li], instead of 6[lc; li] to obtain the multi-scale features of the front.

(iii) To determine the distance to the wall of a flame, we must pay attention to the fact that the front is a multi-scale
structure. If we consider the front at a scale li (by covering by balls of size li), some parts of the front can be closer to the
wall than others. The wall distance is not constant along the front, due to the fact that the front is multi-scale, but also due
to the cyclic fluctuations which induces in the flow motions whose characteristic scale is larger than l0. One way to avoid
this experimental limitation, is to define amean contour by a filtering on the front of the scales larger than the integral scale
of turbulence. This is in agreement with the fact that our aim in this paper is to study the effect of turbulent scales on the
flame i.e. which are scales smaller than integral scale. If we consider a ball of size li on the front, the distance of this ball to
the wall is given by the distance to the wall of the mean contour crossing the ball as it is shown in Fig. 2.
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Fig. 2. The mean contour (bold dashed-line) is determined by filtering the scales larger than integral scale responsible of cyclic fluctuations. In each point
of the instantaneous front, local roughness is measured in a disk of scale li around the point. The wall-distance is measured from the point belonging to
the mean contour, and obtained by drawing the perpendicular to the mean front to the wall.

4. Scale-entropy flux and scale-evolutivity

To studymulti-scale features of flames near awall, two casesmust be considered. (i) The first one concerns the evolution,
at a fixed wall distance, of a multi-scale structure when the scale varies. If the wall distance dd is larger than the integral
scale of the flow l0, the scale–range having a wrinkling effect on the flame is [lc; l0]. If the wall distance dd is smaller than l0,
the scale–range having an effect on the front is reduced to [lc; dd]. (ii) The second case concerns the evolution of multi-scale
structure when the wall distance varies, mainly when this wall-distance becomes smaller than the integral scale.

4.1. Multi-scale structure in scale-space

Flame far from the wall: dd ≥ l0
In a first stage, let us consider that the influence of the wall on the front can be neglected; we will thus consider flames

far from the wall: dd ≥ l0. We start from a turbulent flow having a turbulent intensity U ′, and an integral scale noted l0. The
scale–range characterising the turbulence is thus [η; l0] where η represents the Kolmogorov length-scale. Let us consider
a turbulent flame wrinkled by this flow. The scale–range over which the front is wrinkled is [lc; l0] where lc represents the
internal cut-off scale. We assume, in this first case, that the turbulent flame is further to the wall than a distance equal to
the integral scale i.e. dd ≥ l0. To simplify our presentation, we just consider a part of the flame defined by the scale l0. The
volume at integral scale is l30. Let us now consider the flame at the scale li belonging to [lc; l0].

For each scale noted li belonging to [lc; l0] we define the associated occupation volume as V[li; l0]. If N[li; l0] is the
minimum number of balls of size li needed to cover the flame, then V[li; l0] = N[li; l0]l3i . Since N[l0; l0] = 1 we have

V[l0; l0] = l30. We then define the ratio V[l0; l0]/V[li; l0] which quantifies the number of occupation volumes V[li; l0]
associated to li needed to fill the integral volume V[l0; l0]. The scale-entropy S[li; l0] corresponding to the scale–range [li; l0]
is defined by taking the logarithm of this quantity:

S[li; l0] = ln(V[l0; l0]/V[li; l0]). (5)

A very particular case corresponds to a flame having a fractal structure in the scale–range [li; l0]. In this case, N[li; l0] ∼
l
−1F
i where 1F is the fractal dimension. It leads to the simple formula S[li; l0] = (3 − 1F) ln(l0/li). Let us remark that the
scale-entropy S[li; l0] is defined here by taking the largest scale l0 as a reference. Thismeans thatwhen the scale li approaches
l0, the scale-entropy tends to be null. It is maximum for the scale lc. We can however define a scale-entropy relatively to the
smallest scale by S[lc; li] = ln(V[li; li]/V[lc; l0]) with S[lc; li] + S[li; l0] = ln(l30/V[lc; l0]). The scale-entropy S[lc; li] follows
a behaviour opposite to that of S[li; l0]: it is null for the minimum scale lc and maximum at the integral scale. In this paper,
we choose to work with a scale-entropy S[li; l0] i.e. defined relative to the largest scale.

Let us now consider two scales li and li+1 (with li+1 < li), which are close enough to assume that the front is fractal in
this elementary scale–range [li+1; li], the ‘‘local’’ fractal dimension being 1[li]. It must be emphasised that this dimension
is ‘‘local’’ in the scale-space in the sense that it characterises a fractality but in a very small scale–range. Of course, this local
dimension is considered to be dependent on the scale li: it is scale-dependent. The scale-entropy can be defined for li and
li+1. We are then interested on the scale-entropy jump between li+1and li noted:

S[li; l0] − S[li+1; l0] = ln(V[li+1; l0]/V[li; l0]) (6)
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and the scale-entropy flux φi by:

φ[li] =
S[li; l0] − S[li+1; l0]
ln(li/lc) − ln(li+1/lc)

. (7)

Let us remark that, due to our definition of the scale-entropy, we have S[li; l0] − S[li+1; l0] = −S[li+1; li] since
N[li+1; l0]/N[li; l0] = N[li+1; li]. We thus obtain φ[li] = −S[li+1; li]/ ln(li/li+1). The scale-entropy flux can be easily
calculated; for scales belonging to the elementary scale–range [li+1; li], we have N[li+1; li] ∼ l−1[li]; it gives:

φ[li] = 1[li] − dE (with dE = 3). (8)

The scale-entropy flux in the scale-space is a negative local quantity. It expresses the idea that scale-entropy S[li; l0] =
ln(l30/V[li; l0]) is a decreasing quantity when the scale is increasing. If the system is purely fractal, the flux φ[li] is a constant
quantity since 1[li] is a constant in the scale–range. But we now know that the local fractal dimension 1[li] can vary with
scale and thus leads to a variation of the scale-entropy flux. The absolute value of the flux |φ|max = |φ[lc]| = dE − 1[lc]
is a maximum for the inner cut-off scale lc corresponding to a local fractal dimension 1[lc] = 2 since the flame is without
roughness at this scale. Its minimum |φ|min = |φ[l0]| = dE − 1[l0] is obtained at the integral scale l0 where the local fractal
dimension is noted 1[l0].

In order to characterise the deviation from scale-invariance in the elementary scale–range [li+1; li], we propose to work
with the difference φ[li] − φ[li+1] = 1[li] − 1[li+1] and to introduce a quantity called scale-evolutivity ω[li+1; li] such as
φ[li] − φ[li+1] = ω[li+1; li] [ln(li/lc) − ln(li+1/lc)]. The specific fractal case corresponds to a scale evolutivity being null
since the fractal dimension does not depend on the scale; we must have: ω[li+1; li] = 0. The simplest behaviour after the
fractal one is to consider the case of a constant scale-evolutivity, i.e. ω[li+1; li] = β with β > 0 in a scale range [lj; li]. This
implies

ω[lj; li] =
φ[li] − φ[lj]

ln(li/lc) − ln(lj/lc)
=

1[li] − 1[lj]
ln(li/lc) − ln(lj/lc)

= β. (9)

If scale-evolutivity is constant over the whole scale–range [lc; l0], the scale-evolutivity can then be written

ω[lc; l0] =
1[l0] − 1[lc]

ln(l0/lc)
= β. (10)

Since we know that 1[lc] = 2, in order to determine the numerical value of scale-evolutivity, we need to know the
fractal dimension1[l0], which should depend on the ratio U′/UL. This is an occasion to clarify and reinterpret, in the context
of our geometrical framework, what the fractal dimension 1F measured in a wide variety of experimental configurations
exactly represents. This dimension is, in fact, the slope taken for a limited scale–range [lp; l0] bounded by a large scale
often close to the integral scale l0. The fractal dimension 1F is, in fact, close to the local fractal dimension 1[l0]: we will
thus consider 1[l0] ≈ 1F. For high values of U′/UL, phenomenological arguments linked to Kolmogorov’s spectrum lead
to the prediction 1F = 7/3 [11]. This value is derived by assuming that the characteristic velocity u′

i of a motion of scale

li follows u′
i ∼ l

ζ1
i with ζ1 = 1/3. The argument leads to 1F = 2+ζ1. The phenomenon of intermittency is not taken into

account here. It has been shown that, for high Reynolds numbers, in the intermittent case, we rather have ζ1 = 2γ − 1

with γ = ((1 + 3/
√
8)1/3 + (1 − 3/

√
8)1/3)3 ≈ 0.68 i.e. ζ1 = 0.36 which thus implies 1F = 2.36 [12]. The scaling

ζ1 = 0.36 is in fact what is observed experimentally in a homogeneous and isotropic turbulence. This value 1F = 2.36
gives support to the experimental result by Mantzaras et al. [13] showing that the fractal dimension tends towards the
value 2.36 for U′/UL > 4. As an indication of the order of magnitude of β, if we take lc = 0.2mm, l0 = 2mm, 1[lc] = 2 and
1F = 7/3, it leads to βmax = 0.14 and, with 1F = 2.36, we have 0.156. These values would correspond to high U′/UL ratios.
We can be more precise, since 1F depends on U′/UL. In this frame, we need an expression that gives the fractal dimension
as a function of the ratio U′/UL characterising the turbulence-combustion interaction. Let us quote the phenomenological
expression obtained by North and Santavicca [14]: 1F,NS =

[

2.05/(1 + U′/UL)
]

+
[

2.35/(1 + UL/U
′)
]

. This expression has
been established by considering two extremum values obtained experimentally: 2.05 for low U′/UL and 2.35 for high values
(a value close to 2.36 obtained in the Refs. [12,13]). To be consistent with the fact that for U′/UL → 0, one should have
1F,min = 2 and that, for high values of U′/UL, we rather have 1F,max = 2.36, we propose the slightly modified expression

1F =
[

2/(1 + U′/UL)
]

+
[

2.36/(1 + UL/U
′)
]

, which numerically does imply a negligible change, but is more coherent with
experimental and theoretical features. In our experimental conditions, since U′/UL = 3.53, it gives 1∗

F = 1[l0] = 2.28 and
thus a scale-evolutivity noted β∗ = 0.122.

Flame near the wall: dd ≤ l0
When the distance dd of the flame to the wall becomes smaller than the integral scale of the turbulence, the scales of

the flow (in the direction perpendicularly to the wall) between the flame and the wall become smaller than the integral
scale. The scale–range having an impact on the front is not [lc; l0] anymore but is reduced to [lc; dd]. The wall-distance dd

thus constrains the scale–range, and imposes a sort of new integral scale to the flow at this distance. All the definitions
and equations written for the previous case dd ≥ l0 can be conserved just by replacing l0 by dd. The new scale-entropy
is S[li; dd] = ln(V[dd; dd]/V[li; dd]); the scale-entropy jump is S[li; dd] − S[li+1; dd] = ln(V[li; dd]/V[li+1; dd]); the scale-
entropy flux is unchanged and is defined by φ[li] = [S[li; dd] − S[li+1; dd]] / [ln(li/lc) − ln(li+1/lc)] = 1[li] − dE.
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4.2. Evolution of multi-scale features with wall-distance

In a second stage, we will consider the scale li as a constant, and make the wall distance vary. To do so, in analogy with
the scale-space, we define a hierarchy of wall-distance scales noted dd between lc and l0. The scale-entropy is now defined
by S[li; dd], corresponding to the scale–range [li; dd] is defined by

S[li; dd] = ln(V[dd; dd]/V[li; dd]) with V[dd; dd] = d3
d. (11)

We then consider two close positions dd and dd+1, of the front relative to the wall (with dd+1 < dd); their respective
scale entropies are S[li; dd] and S[li; dd+1]. The scale-entropy jump is defined by S[li; dd] − S[li; dd+1]. Due to our definition
of scale entropy, we have S[li; dd] − S[li; dd+1] = S[dd+1; dd]. It becomes possible to introduce a scale entropy flux through
the wall-distance space.

ψ[dd] =
S[li; dd] − S[li; dd+1]

ln(dd/lc) − ln(dd+1/lc)
. (12)

We have the relation ψ[dd] = S[dd+1; dd]/ ln(dd/dd+1). Using the fact that N[li; dd]/N[li; dd+1] = N[dd+1; dd]; we can
easily express the scale-entropy flux, assuming that the front is locally fractal in the scale range [dd+1; dd]with a dimension
1ψ[dd]. The dimension 1ψ[dd] is a local quantity: the symbol ‘ψ’ indicates that it concerns a variation of wall-distance. We
insist that it does not mean that the front at the wall-distance dd is fractal (whose dimension would be 1ψ[dd]) over the
whole scale range [lc; dd], but only that it is fractal in the elementary scale range [dd+1; dd]. The scale-evolutive flux can
then be calculated easily, since for scales l belonging to [dd+1; dd], we have N[dd+1; dd] ∼ l−1[dd]. It leads to

ψ[dd] = dE − 1ψ[dd] (with dE = 3). (13)

The wall scale-entropy flux is now a positive quantity, given the fact that when the wall-distance increases, wall-scale-
entropy increases. It is maximal at a wall-distance equal to the inner cut-off scale and minimal at a wall-distance
corresponding to the integral scale. Moreover, we have φ[li] + ψ[dd] = 1[li] − 1ψ[dd]. When the wall-distance is the
same than the scale (dd = li), since we have φ[li] = −S[li+1; li]/ ln(li/li+1) and ψ[dd] = S[dd+1; dd]/ ln(dd/dd+1), it leads
to φ[li] + ψ[li] = 0 and then 1[li] = 1ψ[li]. We can write 1ψ[lc] = 1[lc] and 1ψ[l0] = 1[l0].

In analogy with the multi-scale structure in scale-space, we would like to characterise the deviation from pure scale
invariance by introducing a scale-evolutivity̟[dd+1; dd] such asψ[dd]−ψ[dd+1] = ̟[dd+1; dd] [ln(dd/lc) − ln(dd+1/lc)].
The fractal case corresponds to̟[dd+1; dd] = 0. Similarly, we consider the case̟[dd+1; dd] = γ as a constant. If the fractal
dimension decreases when the flame approaches the wall (1[dd+1] < 1[dd]), then this case corresponds to ̟[dd] = −γ
with γ > 0. In a scale–range [dj; di], it gives

̟[dj; di] =
ψ[di] − ψ[dj]

ln(di/lc) − ln(dj/lc)
=

1ψ[dj] − 1ψ[di]
ln(di/lc) − ln(dj/lc)

= −γ. (14)

If scale-evolutivity is constant between dd = lc and dd = l0, i .e. constant over the wall-distance range [lc; l0], the scale-
evolutivity can be written

̟[lc; l0] =
1ψ[lc] − 1ψ[l0]

ln(l0/lc)
= −γ. (15)

Let us remark that, since 1ψ[lc] = 1[lc] and 1ψ[l0] = 1[l0], we have γ = β. So, if scale-evolutivity is constant in the whole
scale–range and the whole range of wall-distances, this implies that scale-evolutivities are the equal in both ranges.

5. Diffusion equation in scale-space: The specific case of parabolic scaling

So far, we worked with discrete scales, with the aim of introducing the main concepts of our approach progressively and
in a clear manner. We will now introduce continuous quantities, in order to define a continuous description. Let us note
x = ln(li/lc). We consider here a flame whose mean distance to the wall (ξ = ln(dd/lc) is fixed with x < ξ); we are merely
interested on the scale dependence of this flame, i.e. on the way in which it is built in terms of multi-scale structure.

We consider an elementary scale–range between x and x + dx (dx is here a differential) (Fig. 3). We assume that the
front is locally fractal in the elementary scale range [x; x + dx] with a dimension denoted 1x. The scale-entropy flux is
φx = dSx/dx = 1x − dE where dE is the dimension of the embedding space, i.e. dE = 3, if we consider three-dimensional
flames. We can also define the scale-entropy flux at scale x + dx; it leads to φx+dx = 1x+dx − dE. For the specific case of
an object which is fractal over a large ‘‘enough’’ scale–range, the fractal dimension is a constant, the scale-entropy flux is a
constant and the local scale-evolutivity is zero over all the scale–range: ω(x) = ω[li+1; li] = 0, ∀li. In a general case, the
local fractal dimension evolves in scale-space, the scale-evolutive flux is not a constant and the scale-evolutivity is not null.
Hence, we assume that there is a production or a loss of scale entropy noted ω(x)dx such as φx+dx −φx = ω(x)dx. It leads
to the equation

d2Sx

dx2
− ω(x) = 0. (16)
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Fig. 3. (a) Sketch explaining scale-entropy diffusion equation between two consecutive scales li+1 et li . (b) Front contained in a domain of size dd covered
by balls of size li+1 and then by balls of size li (c) Volume of occupation corresponding to scale li and its associated scale-entropy flux φx . (d) Volume of
occupation corresponding to scale li+1 and its associated scale-entropy flux φx+dx .

This equation can be generalised, in order to take into account temporal variations of turbulence-flame interaction due
to changes in the boundary conditions. This is possible, thanks to the concept of ‘‘scale-diffusivity’’ χ [7]. This concept
characterises the capacity of amulti-scale system to propagate perturbations through scale-space. Nevertheless, in the frame
of this paper, we will only consider the stationary regime. A very simple case, where local scale-evolutivity is a constant
over scale-space, can be considered. This signifies an equipartition of scale-entropy production or losses. In other words, the
scale-entropy flux sink is uniform over scale-space. This case has been linked to constructal theory in the study of a fluid
distribution system [15]. It corresponds to ω(x) = β with β > 0. We thus have the equation

d2Sx

dx2
− β = 0. (17)

The boundary conditions are defined by

(i) φx=0 = 1[lc] − dE with dE = 3; (18a)

(ii) φx=xd=ln(dd/lc)
= 1[dd] − dE; (18b)

(iii) Sx=xd=ln(dd/lc) = 0. (18c)

We can thus derive the expression of scale entropy where xd = ln(dd/lc) (we have ξ < xd):

Sx = (β/2)x2 + (1[lc] − dE)x − (β/2)x2d − (1[lc] − dE)xd. (19)

Scale-entropy is thus a second-order polynomial of scale-logarithm: we propose to refer to this case by the expression
‘‘parabolic scaling’’. Scale-entropy can be written in the following forms:

Sx = (x − xd) [1[lc] − dE + β(x + xd)/2] ; (20)

Sx = ln
[

(dd/li)
dE−(1x+1xd

)/2
]

. (21)

Let us introduce a mean fractal dimension between x and xd by 1̄x,xd = (1x + 1xd)/2. We can write:

Sx = (xd − x)(dE − 1̄x,xd). (22)

It leads to a local fractal dimension, φx = dSx/dx = 1x −dE, that varies linearly with the logarithmic scale coordinate x:

1x = 1[lc] + βx with β = (1[l0] − 1[lc])/ ln(l0/lc). (23)
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In the particular case of parabolic scaling, the evolution of ln N[li; l0] as a function of scale x = ln(li/lc) leads to a parabolic
form since

ln N[li; l0] = 3(x0 − x) − Sx (24)

where x0 = ln(l0/lc). Experimentally, the curvature (departure from scale-invariance) can be observed, but only for large
enough scale–range. As already expressed, for limited scale–ranges, due to experimental uncertainties, the curve canunfairly
be taken as linear (having a slope 1F) as it has often been the case for the studies investigating the ‘‘fractal structure’’ of
fronts: the scale analysis is approximated by a linear behaviour meaning a fractal behaviour. The pseudo-fractal dimension
Df,m measured for the scale range [lj; li] corresponds in fact to the arithmetic mean fractal dimension between lj and
li : Df,m = (1[lj] + 1[li])/2. More details about this point can be found in Ref. [7]. We have

ln N[lj; l0] − ln N[li; l0] = ln N[lj; li] = (li/lj)
Df,m . (25)

This property can be used to overcome a number of experimental difficulties, to measure a local fractal dimension 1[li].
If we can more easily measure a local fractal dimension 1[lj] for another scale lj, measuring the mean dimension Df,m in the
scale range [lj; li] gives 1[li] since 1[li] = 2Df,m − 1[lj].

6. Diffusion equation in the wall-distance space: The specific case of parabolic scaling

We consider two close positions of the flame relatively to the wall denoted dd and dd+1 with dd+1 < dd. An elementary
jump in the wall-distance is thus defined by the transition from ξ − dξ = ln(dd+1/lc) to ξ = ln(dd/lc). In this part, we
will keep constant the scale defined by x = ln(li/lc). Let us emphasize that the variable ξ is non-dimensionalised, by using
the internal cut-off lc and not with the quenching scale dc. Even if these two scales are very close in terms of the order
of magnitude, (lc is slightly larger than dc : lc ≈ 2dc), the main reason is that, in a turbulent-flame interaction study,
the scale of reference is the one with an effect on the front i.e. lc. The scale-entropy S[li; dd] = ln(V[dd; dd]/V[li; dd])
here is only dependent on wall-distance. By using continuous quantities and keeping the scale li constant, we note Sξ as
the corresponding scale-entropy. The scale-entropy flux is ψξ = dSξ/dξ. If, in this elementary scale–range, a local fractal

behaviour is assumedwith a dimension 1ψ[ξ], it can be easily shown thatψξ = dE −1ψ[ξ]. We then assume the existence
of a conservation law for the scale-entropy flux: ψξ+dξ −ψξ = ̟(ξ)dξ. We thus derive the following equation:

d2Sξ

dξ2
− ̟(ξ) = 0. (26)

As in the case of the multi-scale structure in scale space, this equation can also be generalised, in order to take into
account temporal variations with the concept of ‘‘scale-diffusivity’’ χ [7] but we will consider the stationary regime here. If
the local scale-evolutivity is a constant over scale-space ̟(ξ) = −γ with γ > 0. We thus have the equation

d2Sξ

dξ2
+ γ = 0. (27)

The boundary conditions are defined by

(i) φξ=0 = dE − 1[lc]; (28a)

(ii) φξ =ξi=ln(li/lc)
= dE − 1[li] = dE − 1x; (28b)

(iii) Sξ =ξi=ln(li/lc) = 0. (28c)

We thus can derive the expression of scale entropy where ξi = ln(li/lc) (with ξi < ξ). It gives:

Sξ = −(γ/2)ξ2 + (dE − 1ψ[lc])ξ + (γ/2)ξ2
i − (dE − 1ψ[lc])ξi; (29)

Sξ = (ξ −ξi)
[

dE − 1c − γ(ξ +ξi)/2
]

where γ = (1ψ[l0] − 1ψ[lc])/ ln(l0/lc); (30)

Sξ = ln
[

(dd/li)
dE−1̄ξi,ξ

]

. (31)

With the mean fractal dimension between ξi and ξ defined by 1̄ξi,ξ = (1ξi + 1ξ)/2, we can finally write

Sξ = (ξ −ξi)(dE − 1̄ξ ,ξi
). (32)

This equation leads to a local fractal dimension (ψξ = dSξ/dξ = dE − 1ψ[ξ]), that varies linearly with the logarithmic
scale coordinate x:

φξ = dE − 1ψ[ξ] with 1ψ[ξ] = 1ψ[lc] + γξ. (33)
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Fig. 4. Example of a turbulent flame near the piston.

7. A general diffusion equation and the specific case of the parabolic scaling

We can now generalise the equation for the evolution of scale-entropy, in cases where scale and wall-distance vary
together with the the condition li < dd i.e. x ≤ ξ. The main variable is now noted Sx,ξ. It leads to

∂2Sx,ξ

∂x2
+

∂2Sx,ξ

∂ξ2
+ ω(x, ξ) = 0. (34)

If the scale-evolution follows a parabolic scaling (
∂2Sx,ξ

∂x2
−β = 0) and so does themulti-scale evolutionwithwall-distance

(
∂2Sx,ξ

∂ξ2
+ γ = 0), we then have the following expressions:

∂2Sx,ξ

∂x2
+

∂2Sx,ξ

∂ξ2
− (β − γ) = 0; (35)

Sx,ξ = (β/2)x2 + (1[lc] − dE)x − (γ/2)ξ2 − (1ψ[lc] − dE)ξ. (36)

The local fractal dimensions take the following forms:

1x = dE +φx = dE −
∂Sx,ξ

∂x
= 1[lc] + βx; (37)

1
ψ

ξ = dE −φξ = dE −
∂Sx,ξ

∂ξ
= 1ψ[lc] + γξ. (38)

The local fractal dimensions 1x and 1
ψ

ξ are thus linear functions of respectively scale-logarithm and of the logarithm of

wall-distance. Since scale-evolutivities are equal (β = γ); we can finally write

∂2Sx,ξ

∂x2
+

∂2Sxξ

∂ξ2
= 0 (39)

and

Sx,ξ = (β/2)(x2 −ξ2) + (1[lc] − dE)x − (1ψ[lc] − dE)ξ. (40)

For this latter case, taking 1[lc] = 1ψ[lc] = 2 and dE = 3 we derive

Sx,ξ = (ξ − x) [1 − β(x + ξ)/2] with x ≤ ξ. (41)

8. Experimental investigation on a corpus of turbulent flames obtained near a wall

In order to use and verify some previous theoretical derivations, we would like to investigate turbulent flames
experimentally and see, since fractal behaviour appears too crude, if one can find a simple behaviour, maybe a parabolic
one, corresponding to a constant scale-evolutivity in scale–ranges and linear variations of local fractal dimensions with
scale-logarithm or logarithm of wall-distance. Two types of measurements concerning the multi-scale structure can be
done:

(i) We are interested in the evolution with scale of the ‘‘local fractal dimension’’ given by the box-counting method. It
simply corresponds to the local slope of the quantity ln(N[li; l0]) as a function of scale x = ln(li/lc). This behaviour will be
studied for flames far from the wall and near the wall (at the wall distance dd) taking into account that, for the latter case,
the relevant scale–range is reduced to [li; dd].

(ii) The second kind of study is to follow the evolution of the ‘‘local fractal dimension’’ with wall distance and mainly at
scales closer to the wall distance.

8.1. Experimental configuration

The research engine used for this experiment is a transparent SI engine developed by Renault [2]. It is a four valve pent-
roof chamber with a displacement volume of 500 cm3 and a compression ratio of 9.5. To provide optical access within the
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Fig. 5. Evolution of ln(1/3[lc; li]) as a function of x for wall-distances varying from 0.3 mm ≤ dd ≤ 3.8 mm. The arrow on the right indicates decreasing
values of wall-distance from 3.9 mm to 0.3 mm. Vertical dashed-lines indicates the inner cut-off scale lc , the scale lp used for the measurement of 1ξ , the
integral scale l0 and the outer cut-off scale lM .

combustion chamber, the piston is elongated and equipped with a quartz window (66 mm diameter). The cylinder head is
bored and has two lateral windows. The engine is driven by an electric motor at 2000 rpm and the intake air pressure is
fixed at 500 mbar. In this study, the shape of the combustion chamber determines the aerodynamic field.

The turbulencewas characterised from POD analysis of velocity fields obtained by PIV in previous studies: the turbulence
intensity U′ = 1.8 m/s, the average integral length scale l0 = 2 mm. So, the estimate of the micro-scale λ and of the
Kolmogorov length scale η are respectively 0.3 mm and about 15 µm [2]. Methane is continuously injected in the far
upstream of the intake valves, to obtain an air-fuel mixture that is cyclically reproducible and as homogeneous as possible.
The equivalent ratio is fixed to 1, then the Lewis number is equal to 1. To reduce the influence of residual burnt gases, the
engine is fired only every 6 cycles. The electrodes of a conventional spark plug (gap spacing of 1 mm) are aligned with the
roof of the cylinder head. The ignition timing is fixed at 30 Crank-Angle-Degrees Before-Top-Dead-Centre (CAD BTDC) and
the images are recorded at 15 CAD BTDC.

The thermodynamics conditions have been measured: the pressure at the CAD is equal to P = 9 bar; the temperature is
600 K. The laminar burning speed UL, as a function of pressure, temperature and equivalence ratio, is calculated and gives
UL = 0.51 m/s. The laminar flame thickness is equal to δ = 16.4 µm. We thus have a ratio U′/UL = 3.53. This implies a
Damköhler number Da = (l0/δ)/(UL/U

′) equal to 35 and a Karlovitz number Ka = (δ/η)2 equal to 0.6. Our corpus of flames
(see an example in Fig. 4) belongs to the flamelet regime, meaning that the internal structure of the flames is not modified
by the flow but is only wrinkled.

To determine the fractal parameters, we used laser tomography images obtained by Planar-Laser-Induced-Fluorescence
of acetone, excitedwith a quadrupledNd-Yag Laser (50mJ energy, pulse duration<10 ns, laser sheet∼0.5mm,wavelength:
266 nm). The images (600 images, 12-bit images, 512 × 120 pixels2) were recorded with an Intensified-CCD camera
(Princeton-Pentamax), 10 ns after the laser pulse. The spatial resolution is 62.3 µm/pixel (providing a field of view equal to
32.3 × 7.6 mm2). For more details see Refs. [2,3].

Due to cyclic fluctuations generated on the front wrinkling for scales larger than the integral scale of turbulence, we
proceed to a filtering of the scales larger than l0. This gives us the mean contour of the instantaneous front. The distance to
the wall will be taken relative to this mean contour (see Fig. 2). For a specified scale, at each point of the instantaneous front,
we measure the distance to the wall dd, and the local linear roughness λ[lc; li]. Defining classes of wall distances (0.2 mm
range), we compute the mean roughness 3[lc; li] on all the balls with a wall distance belonging to this class. This procedure
is repeated for each scale (the local roughness and the wall distance are measured). Our results are presented in the Fig. 5. It
gives ln(1/3[lc; li]) forwall distance varying from0.3 to 3.9mm.We recall that the variation of ln(1/3[lc; li]) versus x, gives
the scaling behaviour of the front and namely the quantity N[li; l0], since 1/3[lc; li] = (1/3[lc; l0])N[li; l0](li/l0)(Eq. (4)).
More exactly, the local slope gives access to 1−1x. The scale analysis (ln(1/3[lc; li]) versus x) shows clearly that the flame
cannot be considered as a fractal, since there is no straight linear part on the ln–ln curve. One can verify that the outer cut-
off lM is close to 11 mm. The integral scale seems to divide the curve into two symmetrical parts. Let us now analyse more
closely how the local fractal dimension 1x (the local slope of the curve is exactly 1 − 1x) evolves with scale.

8.2. The multi-scale structure of flames far from the wall (dd > l0): The fractal dimension is a scale-dependent quantity

The multi-scale structure of flames far from the wall is investigated (with 2 mm < dd ≤ 3.9 mm). The flame displays a
scale-dependent behaviour of fractal dimension.We thus determine the local fractal dimension1x as a function of the scale
logarithm, which is given by the local slope (the slope gives more exactly the quantity 1 − 1x) of ln(1/3[lc; li]) versus x.
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Fig. 6. Local fractal dimension 1x as a function of scale logarithm x. The linear fit corresponding to the first zone [lc; l0] leads to 1x = 0.13x + 1.99. The
linear fit in the symmetrical zone gives 1x = 0.15x+ 2.63. Vertical dashed line indicates the integral scale. The horizontal dashed line indicates the value
1∗

F = 2.28 derived by using Ref. [14].

The evolution of the local fractal dimension as a function of the scale logarithm x (Fig. 6) reveals two distinct zones showing
a transition at the integral scale: (i) the local fractal evolution increases with the scale logarithm from 2 to a maximum
value around 2.28. This maximum is close to the value 1∗

F = 2.28 calculated using a slightly modified version of North and
Santavicca’s expression [14].

(ii) The local fractal dimension decreases beyond a scale corresponding to the integral scale. The integral does divide
the curve in two parts. Let us consider the first zone, i.e. the part that corresponds to the scale–range [lc; l0]. It can be
approximated by a linear behaviour, whose slope is β = 0.13. This linear behaviour would correspond to the parabolic case,
which implies a local dimension linear with the scale-logarithm. Let us note that the second zone can also be approximated
by a linear law with a slope of 0.147, close to the first one. We thus conclude that multi-scale behaviour of turbulent flames
at distances larger than the integral scale is well approximated by two symmetrical zones following parabolic scaling. We
emphasise the fact that parabolic scaling can only be an approximation, since one cannot have a rough break in the slope in
Fig. 6 but, taking into account all the experimental uncertainties that such measurements imply and the simple assumption
we did through constancy of scale-evolutivity, parabolic scaling is reasonably verified in our experimental results.

8.3. The multi-scale structure of flames near the wall (dd < l0): Variation of fractal dimension with wall-distance

We studied the multi-scale structure of flames near the wall (with 0.3 mm ≤ dd ≤ 2 mm), for wall distances smaller
than the integral scale l0. The relevant scale–range becomes [lc; dd], since scales larger than dd have no effect on the front.
We need to measure the local fractal dimension at the scale dd; this is given by the local slope of the scale analysis but, due
to experimental uncertainties which increase with scale, this is rather difficult. So we choose a relatively small scale–range
[lp; dd] and we determine, for this scale–range, the mean slope leading to a measured value Df,m(dd). This is, in fact, a mean
value since, at is already known, the scale analysis is not linear and the front is not fractal. At a preliminary stage, we can
assume that this value corresponds to 1[dd]. But it is possible to be more precise when the fact that scale analysis follows
parabolic scaling is considered. The mean fractal dimension Df,m(dd) is measured in a seemingly linear part from a scale
lp, and the scale corresponding to wall-distance dd; if we consider a parabolic scaling, this measured dimension can be
written Df,m(dd) = (1[lp]+1[dd])/2. Since1[lp] is known, thanks to our previous scale analysis (it can bemeasuredmore
easily since uncertainty on local slope is smaller at small scales), by measuring Df,m(dd), we can determine 1[dd]. The value
of 1[dd] noted 1ξ with ξ = ln(dd/lc) is measured for our corpus of flames. We took lp = 1.1 mm which corresponds to
1[lp] = 2.2. This point corresponds to the one towards which all the curves seem to converge (see Fig. 5). Beyond this point,
these curves display an identical small scale behaviour. We observe (Fig. 7) that the local dimension has a linear evolution
with ξ until the value of ξ corresponding to the integral scale (the slope is 0.13); this is followed by a saturation of fractal
dimension around 2.29–2.30 (close to the value 1[l0]∗ = 2.28) for a wall-distance larger than the integral scale.

Finally, we represent in Fig. 8, the local fractal dimensions for scales and wall-distances smaller than the integral scale.
The two curves are similar. The global linear fit gives 0.124, which is very close to the value β∗ = 0.122 calculated using
Ref. [14].We can conclude that the local fractal dimension is linearly dependent on the scale-logarithm and on the logarithm
of the wall-distance.

9. Conclusion

As a conclusion, we introduced a new geometrical framework, based on scale-entropy and a scale-entropy diffusion
equation to describe the multi-scale features of turbulent flames in the vicinity of a wall. In order to define the departure of
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Fig. 7. Mean dimension Df,m(dd) over [lp; dd] and local fractal dimension1ξ as a function of scale logarithm ξ (with Df,m(dd) = [(1[lp]+1ξ)/2]. Vertical
dashed line indicates the integral scale. The linear fit (for wall distances belonging to [lc; l0]) gives1ξ = 0.12+1.99ξ. The horizontal dashed line indicates
the value 1∗

F = 2.28 derived by using Ref. [14].

Fig. 8. Local fractal dimensions 1x and 1ξ as a function respectively of x and ξ for li and dd varying in [lc; l0]. The linear fit with all points gives a slope
0.124 and is indicated by the thicker dashed-line. The other dashed-line indicates the slope corresponding to the value β∗ = 0.122 derived using Ref. [14].

a multi-scale system from pure scale invariance, we introduced the notion of scale-evolutivity which, for the general case,
depends on the scale and the wall distance. We studied the particular case (‘‘parabolic scaling’’) in which scale-evolutivity
is a constant. A specific behaviour of turbulent flames is expected for such a case, namely that the local fractal dimension
should follow a linear variation with the logarithm of scale, and the logarithm of wall distance. We found that real turbulent
flames near awall are close to this particular case, with a scale-evolutivity equal to 0.12. The general case gives us a diffusion
equation for scale-entropy which is directly linked to the flame roughness, i.e. to the turbulent flame velocity. We would
like to investigate the ability of this equation to be used for a new kind of geometrical modelisation of turbulent flames in
the vicinity of a wall.
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