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Abstract— We address the problem of navigation in topo-
metric maps created by using odometry data and visual loop-
closure detection. Based on our previous work [6], we present
an optimized version of our loop-closure detection algorithm
that makes it possible to create consistent topo-metric maps in
real-time while the robot is teleoperated. Using such a map, the
proposed navigation algorithm performs qualitative localization
using the same loop-closure detection framework and the
odometry data. This qualitative position is used to support
robot guidance to follow a predicted path in the topo-metric
map compensating the odometry drift. Compared to purely
visual servoing approaches for similar tasks, our path-following
algorithm is real-time, light (not more than two images per
seconds are processed), and robust as odometry is still available
to navigate even if vision information is absent for a short time.
The approach has been validated experimentally with a Pioneer
P3DX robot in indoor environments with embedded and remote
computations.

Keywords: Path following, vision, robot odometry, topo-
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I. INTRODUCTION

To navigate autonomously in a large environment, a robot

often requires the ability to build a map and to localize

itself using a process named Simultaneous Localization and

Mapping (SLAM). The field of SLAM can be broadly

divided into two approaches: topological and metrical. The

most common approach is the metrical SLAM in which we

traditionally use range sensors such as laser or sonars. This

mapping method is explicitly based on measured distances

and positions. The localization is geometric and clearly

corresponds to the real world. It can be done continuously

and planned navigation is accurate. The main problem is that

global geometric consistency is hard to ensure and the map

is therefore hard to build. Moreover, the sensors are usually

expensive and the computation heavy and greedy.

Now, more and more often those sensors are replaced by

cameras because they provide many advantages such as lower

price, smaller size, lighter weight, lower energy consumption

and give a richer environmental information. Using these

sensors, it is possible to recover metric information, but a

more direct way to map the environment is to use topological

approaches where the environment is modeled as a graph of

discrete locations. These maps are easy to build, suitable

for large environments and for human interactions. Their

main drawback is the lack of geometric and free space

information that only allows localization and navigation close

to previously mapped routes. In our previous work [6], we

built topological maps using visual loop-closure detection

and we used odometry data to enrich this topological map

with metric information. The choice of this second sensor

makes the mapping more accurate, reduces the computational

cost compared to purely visual solutions and also makes the

system more robust to vision failure.

Contribution: The main contribution of this paper is

the development of a new robust and light path following

algorithm combining the use of these two cheap sensors

(odometer and camera) that allows autonomous navigation

in such previously learned topo-metric maps. The approach

is qualitative and uses the feedback information given by the

vision sensor to approximately correct the odometry drift in

order to follow a path computed from the map. This path

following system can be used for delivery robots, security

robots, guide and following robots for example.

Content: In Section 2, we present a review of related

work on topological navigation. In Section 3, we recall our

previous work on topo-metric mapping and present new opti-

mizations that have been brought to this system. In Section 4,

we explain our new framework on path following navigation

using these topo-metrical maps. Finally, in Section 5, we

show experimental results and we conclude in Section 6 with

a discussion about this contribution and our future work.

II. RELATED WORK

Localization is a key issue for mobile robots in en-

vironments where a globally accurate positioning system,

such as GPS, is not available. Today, the most used sensor

to map an environment and to navigate autonomously in

a map is definitively the laser sensor, combined with a

SLAM framework it builds up a map within an unknown

environment while at the same time keeping track of the

current location (see [26] for an overview of the metrical

SLAM approaches). The position is accurate, and the map

displayed as a geometrical occupancy grid allows the robot

to explore its surrounding. In our work, we have addressed

the problem of autonomous navigation method, but focusing

on the visual sensor. As we make use of a topological

map [5], [7], [25], we have no information about obstacles,



and about free space around the robot, that is why our

navigation method has been limited to follow path that have

been already taken by the robot. The traditional method for

this kind of application is visual servoing also known as

vision-based robot control which uses feedback information

extracted from images to control the motion of the robot

[20]. Those methods generally require camera calibration

(homography, fundamental matrix, Jacobian, removal of lens

distortion [4], [9], [21], [24], [8]). Also, some approaches

make assumptions on the environment (artificial landmarks,

vertical straight lines, parallel walls) or sometimes need more

than one camera or camera of different kind (omnidirectional

for example) [4], [19], [14], [12].

In our research context, we have been interested by the

use of a perspective camera without calibration (indeed, our

method also works with omnidirectional camera [6]), and

above all without any assumption on the environment. Such

calibration free methods had been developed by [10], [11].

They are based on image features tracking, and use qual-

itative comparisons of images to control the motion. Such

methods are very interesting but they require real-time image

processing at high frame rate and are highly dependent of the

quality of image data. Tracking errors or temporary absence

of information lead quickly to system failure. Moreover,

they need lighting constancy so additional processing are

generally added to ensure the desired behavior.

To make our system more robust and accurate, and above all

lighter from a computational point of view, we enable the use

of one more cheap sensor: the odometer. Visual sensor pro-

vides a rich information and an accurate positioning system

and the combined use of odometry makes the algorithm more

robust and relieve the visual system from high frame rate

computation. Odometry allows localization for a short time in

absence of visual information, vision failure (dark or dazzle

areas, blurry image, occlusions), or important changes in the

scene that has been learned (light, people). When embedded

on small platforms, this makes it possible to remotely process

images by guiding the robot in case of network lag. As we

are not too much dependent of visual information, it is also

possible to use visual localization information only when it

is very reliable, avoiding to give position information that

would be unsure. We therefore developed a robust visual

localization system that completely banned false alarms, to

the price of giving less localization information.

III. IMPROVED TOPO-METRIC MAPPING

For the next, we will call loop-closure the event where the

robot detect a matching between the current and the reference

frame. It differs from the traditional loop-closure definition

in which we associate the loop-closure to the event where

the robot revisit an area it has not been to before a while.

A. Summary of our previous work

In [6], we have developed a fully incremental topo-metric

mapping framework. This algorithm builds in real-time topo-

metric maps of an unknown environment, with a monocular

or omnidirectional camera and the odometry gathered by

Fig. 1. Comparison of topo-metrical mapping and laser mapping. 1.
Raw odometry 2. Corrected odometry applying graph relaxation taking
into account the visual loop-closure (two loop-closure locations detected)
3. Ground truth trajectory (SLAM Laser). The three trajectories are shown
in the frame of the reference laser map.

motors encoders (see Fig. 1). The system is based on an

appearance loop-closure detection method that has been

designed as a two-level decision system to ensure robust and

accurate detection. A first step detects potential loop-closure

locations when the robot comes back to a previously visited

area using appearance only. A second one verifies and selects

the best potential location using image geometry.

A Bayesian filter based on incremental bags of visual words

[16] is used to extract potential loop-closure locations that is

to say find the previous positions that are potentially close

to the current one. In the second step these locations are

verified with a 2D motion computation in the image space

(translation and rotation in image plane) based on the SIFT

[22] keypoints and we select the loop-closure which shows

the smallest translation. In order to discard outliers, the 2D

motion is computed using RANSAC, accepting the result

only if the number of matching points is above a threshold.



With the inclusion of an odometry-based evolution model in

the Bayesian filter which improves accuracy, robustness and

responsiveness, and the addition of a consistent metric posi-

tion estimation applying an efficient optimization algorithm

at each validated loop-closure [18], our system produces a

map that corresponds to the real world and only presented

limited local drift. It makes it usable for global localization

and planned navigation.

For the current work, the robot is teleoperated during an

initial mapping phase and our algorithm is used to build a

map usable later for navigation. The environment is divided

into locations (defined by one or more images) that are

linked by relative odometry vector. The sampling of the

environment is done each time the robot goes ahead for

50 cm or turn of 10 degrees. This mapping phase does not

need any preprocessing, calibration, neither postprocessing

or parameters adjustment and it builds incrementally its map,

adding new location if no loop-closure has been found or

updating a location and correcting the graph if a loop-closure

has been found (see Fig. 1).

B. Optimization of the loop-closure detection algorithm

Since we will use this framework for real-time path-

following navigation, we brought some optimizations to the

approach, notably to improve the performances of the visual

localization module:

• We have improved the performances of the algorithm by

replacing SIFT [22] keypoints by STAR [3] keypoints.

It has greatly divided the keypoints extraction time

(more than 20 times), but it has decreased the number

of keypoints and their quality. We have compensated

this quality loss by using a new validation strategy less

restrictive on the number of extracted keypoints.

• We improved the accuracy of the prediction step of

the Bayesian filter which is used to extract potential

loop-closure locations. Our first version was only using

the probability at the previous time-step to predict the

new one. In the new version, the Bayesian filter takes

into account several previous time steps and the evo-

lution model is applied to the odometry displacements

corresponding to these time-steps. The predictions are

lastly merged using the max operator to give the final

prediction. This step reduces the influence of the map

discretization on the quality of the prediction and makes

more accurate the extracted potential locations.

• We simplified the validation stage by modifying the

geometric model of image transform and by threshold-

ing using all the parameters extracted from 2D motion

computation in the image space (translation, rotation

and scale). The computation of an homography using

four couples of matching points through RANSAC[17]

has been replaced by a simpler computation of a 2D

motion using two couples of points through RANSAC.

Homography was already a simplified version of the

real transform but as we work on images with very

close viewpoint when closing loops, it could be again

simplified to speed up the computation.

TABLE I

COMPARED RESULTS OF OUR VISUAL LOOP-CLOSURE DETECTION

SYSTEM (LCDS) BEFORE AND AFTER OPTIMIZATION.

Museum Gostai Lab (Fig. 1)

Images 112 169 350
Distance (m) 38 82 98

LCD Truth 14 25 9

Old LCDS [5] 13 18 7
Missed LC 7 % 12 % 20 %
False LC 0 % 5 % 0 %

CPU Time 42s 70s 210s
CPU Time/image 0.37s 0.41s 0.5s

New LCDS 13 26 8
Missed LC 7 % 0 % 22 %
False LC 0 % 3.84 % 11 %

CPU Time 2.16s 2.57s 5.56s
CPU Time/image 0.019s 0.015s 0.016s

• A dedicated embedded version of the algorithm for

a use directly on the robot has been developed. The

code has been fully rewritten in C++ suppressing many

dependencies, the logging part and obsolete function-

alities added during the development. The incremental

dictionary has been replaced by a generic static one

generated from various indoor data set [23] to increase

processing speed.

• A new navigation mode (described in the next section)

has been created to perform path following navigation

using the loop-closure detection framework. Compared

to the mapping mode, the incremental part of the

system that adds new words in the dictionary, new

locations in the graph and that relaxes the topo-metrical

map is disabled. It therefore enables qualitative visual

localization in the topo-metric map.

It is important to note that, during mapping, loop-closure

are only accepted and integrated in the map if the robot

comes back very close to a previously visited location. A

loop-closure is therefore accepted only if the two images

show enough matching points, and if the computed rotation,

translation and scale between them are below some threshold

[6]. We will see below that this definition has been relaxed

for the navigation mode by disabling the translation thresh-

old.

Table I presents some computation time and loop-closure

comparison results using the old and the optimized version

of the algorithm. The old LCDS includes the first version

of our algorithm to which we add the odometry and the

relaxation. It uses SIFT feature, the old odometry model, and

the homography-based validation system. The new LCDS

includes the fully optimized code version, the modified

odometry model, the simplified validation system and the

use of STAR feature. The machine used for experimentation

was an Intel Xeon 3Ghz, the images size 320x240, and the

average speed of the robot 0.4m/s. See [5] for a description

of the different sequences and for more information about

the old LCDS.



Fig. 2. Diagram of the developed system. Each box represents an uobject.

C. Software overview

The system has been developed using Urbi[1] an open-

source software platform to control robots. It includes a

C++ component library called Uobject to describe motors,

sensors and algorithms. We also use urbiscript to glue the

components together using embedded parallel and event-

driven semantics. Figure 2 presents the whole description

of the architecture of our mapping, localization and path

following system. It is composed of five different compo-

nents including a viewer to supervise robot behavior. Two

components have been tested remotely in particular our

visual SLAM algorithm.

IV. QUALITATIVE NAVIGATION SYSTEM

The newly developed navigation mode is based on a

qualitative position estimate that combines odometry with

the visual information provided by loop-closure detection.

A. The navigation mode

The navigation mode of the algorithm presented in this

paper requires a topo-metrical map, and the knowledge of

the robot starting position in the map. A path to reach a goal

from the starting position is computed as a list of nodes using

Dijkstra algorithm [13], taking into account the orientation

of the robot in each node.

In order to follow the computed path, the robot position

is continuously computed using odometry and visual loop-

closure detections. In this mode, loop-closure detection is

less restrictive than in the mapping mode, as loop-closure

are accepted whatever the translation between images is. This

translation is used to estimate an approximate position which

is used to guide the robot. This use of a less restrictive loop-

closure validation makes it possible to benefit from much

more position correction than in the mapping mode, even if

these corrections are less accurate. This limited precision is

however not a problem as only localization is performed and

the map quality is therefore not impacted. This navigation

mode requires that the trajectory is obstacle free because

obstacle avoidance is not currently included in our model.

B. Qualitative localization using vision and odometry

The visual loop-closure detection framework verifies at

each recorded image if the robot is in an already visited

location or not. When a loop-closure is detected, the sim-

ple matching between images does not permit to estimate

precisely the robot position relatively to the image in the

map as the scale factor is unknown when computing the

camera displacement. Moreover, for small displacement and

particular environment configuration, there is an ambiguity

because a lateral translation in images can be caused either

by a robot translation or by a rotation. For these reasons, we

prefer to estimate a qualitative position, by assuming that the

image movement is caused only by a rotation of the robot.

Fig. 3. Illustration of the qualitative visual localization. A loop-closure
is detected between image 9 (right) and image 45 (left) with 33 pixels of
x-axis translation. The computed corresponding angle of robot rotation is
4.73 degrees.

Therefore, when a loop-closure is detected the parameters

extracted during the validation of potentials loop-closure

locations are used to estimate a qualitative direction. Among

the three parameters (translation, rotation and scale), we only

use the x-axis translation in pixels between the two matching

images to compute the angle between the current robot

direction and the direction recorded in the map. An rough

camera calibration (only based on image size and camera

vision field) make it possible to convert this translation in

pixels into an angle (Figure 3). The position of the robot is

therefore computed as the position of the loop-closure node

but taking into account the deviation in direction.

If no loop-closure is detected between places correspond-

ing to an image acquisitions, the position is computed as the

previous loop-closure location position to which the relative

odometry recorded since this point in time is added. This

makes it possible to produce a continuous position estimate

which is corrected when a loop-closure is detected.

C. Servoing system for path following

To control robot motion we have used the strategy pro-

posed by [15]. In order to reach a goal in the topo-metric

map, we first compute a sequence of nodes using Dijkstra

algorithm. The path linking this sequence of nodes is then

discretized each centimeter to form the global path that



Fig. 4. Left: Example of vision-based path following replaying the
trajectory used for mapping. The green and pink trajectories are the laser
SLAM trajectory recorded during the mapping phase and the autonomous
replay phase respectively (approx path length 30m). The blue trajectory is
the odometry recorded by the robot during the replay phase. Right: Topo-
metric map of the environment created during the same experiment. Green
and pink circles are the nodes of the topological map, displayed here without
map relaxation as we have not close loops during the learning phase. The
pink circles are the loop-closure places detected during the replay phase.
The length of line in the middle of the pink circles is proportional to the
x-axis translation computed from the matching images.

Fig. 5. Left: The robot follows the local path but deviates from the true
trajectory because of the odometry drift. Middle : The visual loop-closure
detection framework gives a qualitative localization of the robot in the graph
taking into account the deviation in direction. As a consequence, in the real
world, the local path is modified and the robot corrects its trajectory in order
to stay on the desired path. Right : The robot follows the local path and
regain the true trajectory.

should be followed to reach the goal. This global path is only

computed one time. When an image is acquired, the position

is updated using visual information, and a local path to join

or to follow the desired trajectory is computed between the

position and the global path. The local path is a line between

the position and a point of the global path situated at 40 cm

in front of the robot to which we add the global path after

this point.

Given the local path, each time the robot moves, the position

is estimated as described above and the first point in the local

path situated at more than 20 cm of the robot is selected as a

target. A heading direction error between this point and the

robot position is computed and used to estimate the rotation

speed by using a PID controller. As the robot translation

speed is set to a constant, the servoing system adjusts the

velocity of each wheel to correct the heading error and to

follow at best the local path (see Fig. 5).

While this guidance strategy is quite standard, it should be

noted that the interplay between this strategy and the quali-

tative localization method has the effect of guiding the robot

to actively close loops during movement. Indeed, without

the qualitative localization, the robot would be guided by the

odometry only and the drift induced would lead the robot far

from the map nodes, thus preventing from visual loop closure

detection. With this strategy, each time the robot deviate from

the predicted path, the qualitative position correction lead to

a local path that guides the robot back on the global path,

thus enforcing future loop-closure and position correction.

V. RESULTS AND DISCUSSION

To validate our method, experimentation have been done

in an indoor environment using a Pioneer P3DX mobile

robot mounted with a Canon VC-C50i camera with a wide

angle lens. During the showed experiment all the code was

embedded on the robot except the viewing system. The image

processing rate was 1 image each 50 cm or 10 degrees.

To give an accurate idea of what the system is able to do,

we have launched in parallel with our mapping and path

following system the laser SLAM positioning system Karto

[2]. It gives a reference trajectory in a laser map during

the learning and the path following phases. Figure 4 (left)

shows an experiment where the trajectory used for mapping

(in green) has been replayed using our system (trajectory

in pink). The odometry recorded during the path following

run (in blue) shows the drift that has been compensated

by the visual localization system and that would have led

inescapably to wall collision without these compensations.

Figure 4 (right) illustrates the effect of our qualitative lo-

calization approach during the same experiment. The pink

circles correspond to the locations where loop-closures have

been detected during path following. The pink line in the

circle is the translation computed between the loop-closing

images that is used for the qualitative position estimation.

We can see that our guidance framework lead to a high loop-

closure detection rate (around 60% here) and that the path

following behavior is very smooth with sometimes 5 images

without direction correction.

Figure 6 shows another experiment illustrating the purpose

of Dijkstra algorithm. The replayed trajectory (in pink) to go

from the first node to the last node of the map is avoiding the

large loop executed during map construction as a shortcut is

available. This experiment also illustrate that it is possible to

map and localize with different image sampling frequency.

Here, the map has been produced with images sampled every

5 cm, thus leading to a very precise map. Guidance has then

been executed with images recorded every 40 cm that is to

say lighter computations.



Fig. 6. Another example of the path following system illustrating the use
of Dijkstra algorithm to replay a short-cut trajectory and the use of different
sampling frequencies for mapping and navigation.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have addressed the problem of navigation

in topo-metric maps by using visual loop-closure detection.

The presented algorithm uses the vision system and the

odometric data for qualitative localization in the topo-metric

map in order to guide the robot to follow a path already taken

during a learning phase. The qualitative visual localization

is computed and sent to a servoing system that compensates

the odometry drift to ensure we are always on the learned

trajectory. This system can be seen as an active loop-

closure detection framework as we are forcing by controlled

guidance to close loops. The system only needs two sensors

and really few computer resources to achieve the navigation

task. It is real-time and does not need any precise camera cal-

ibration or parameters adjustment. With minor adaptations,

it can use any kind of camera (omnidirectional, wide angle

or directional) and is suitable for toy robots as it just needs

cheap sensors and small computation performances.

As odometry is used to complement the visual information,

the system is robust to lighting change, furniture moved,

people crossing, blurry image or even from temporary sensor

occlusion or lag of the vision system response. From this

point of view, it can also be used as a remote process to

lighten again the on-board computer charge.

Future work will deal with localization after kidnapping

by applying the loop-closure detection framework while the

robot is spinning around. This will be used to retrieve the

direction to follow a path after a kidnapping. We will also

add to our system sonar data to obtain a map giving an

information about the occupancy of the free space around

us. This will allow navigation with obstacle detection and

avoidance and also autonomous exploration.

REFERENCES

[1] http://www.urbiforge.org, [Online; accessed 20-April-2011].
[2] http://www.kartorobotics.com, [Online; accessed 20 April-2011].
[3] M. Agrawal, K. Konolige, and M. Blas, “Censure: Center surround

extremas for realtime feature detection and matching,” in European

Conference on Computer Vision, 2008, pp. 102 – 115.
[4] S. Atiya and G. Hager, “Real time vision based robot localization,”

IEEE Trans. Robot. Automat., vol. 9, pp. 785–799, 1993.
[5] S. Bazeille and D. Filliat, “Combining odometry and visual loop-

closure detection for consistent topo-metrical mapping,” International

journal on operations research (RAIRO), vol. 44, pp. 365–377, 2010.
[6] S. Bazeille and D. Filliat, “Incremental topo-metric slam using vision

and robot odometry,” in Proceedings of the International Conference

on Robotics and Automation (ICRA11), 2011.
[7] J. Blanco, J. Gonzlez, and J.-A. Fernndez-Madrigal, “Subjective local

maps for hybrid metric-topological slam,” Robotics and Autonomous

Systems, vol. 57, pp. 64–74, 2009.
[8] O. Booij, B. Terwijn, Z. Zivkovic, and B. Kröse, “Navigation using an
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