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Abstract—We address the problem of simultaneous localization
and mapping (SLAM) by combining visual loop-closure detection
with metrical information given by a robot odometry. The
proposed algorithm extends a purely appearance-based loop-
closure detection method based on bags of visual words [1]
which is able to detect when the robot has returned back to
a previously visited place. An efficient optimization algorithm is
used to integrate odometry information in this method to generate
a consistent topo-metrical map. The resulting algorithm which
only requires a monocular camera and odometry data and is
simple, and robust without requiring any a priori information on
the environment.
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I. INTRODUCTION

To navigate in their environment, humans and animals use

several strategies, from reactive guidance towards a visible

goal to larger scale planning to reach distant goals. These

last strategies require the cognitive ability to build a map and

to self-localize in it [2]. Maps-based navigation seems quite

natural to humans because using a map is a very convenient

way to describe an environment but it requires a lot of high

level cognitive processes in order to interpret the map and to

establish correspondence with the real world. However, many

ethological and neurological studies showed that animals made

also use of maps for navigation.

Building such map and using it is based on two distinct

sources of information. The first is the internal information

about the movements: speed, acceleration, leg movement. The

second provides external information about the environment.

It may be derived from vision, odor, or touch. In animals,

the integration of these information for map building appear

to take place in a part of the brain called hippocampus [3].

The navigation problem for robots is very similar and make

use of the same information (e.g. wheel rotation and laser-

range finders or camera), which lead several author to propose

navigation systems for robots inspired by neurobiological

findings (e.g. [4]).

The approach proposed in this paper is not directly inspired

by biology, but has some key similarities with biological

systems by using the same subjective information and being

completely autonomous and incremental without requiring any

information that would not be available for a human or an

animal in the same scenario.

II. PREVIOUS AND RELATED WORK

Over the last years, the increase in computing power pushed

forward the use of visual information in robotic applications.

The camera sensor is often used to replace the traditional range

and bearing sensors because it provides many advantages such

as smaller size, lighter weight, lower energy consumption,

and above all a richer environmental information. The vision

sensor is suitable for many robotic applications such as user

interaction or object and place recognition [1][5], and has also

been used in many Simultaneous Localization And Mapping

(SLAM) solutions (e.g. [6][7][8]). SLAM [9] is the process of

localizing a mobile robot while concurrently building a map of

its environment. In this very active research area, we are more

specifically interested in topological SLAM [10] that models

the environment as a graph of discrete locations.

In this paper we focus on extending the work done by

Angeli [1], who has developed a real-time vision-based topo-

logical SLAM framework. The proposed method is fast and

fully incremental (i.e. the system can be used without any a

priori information about the environment), and uses appear-

ance information from a single camera to build a topological

map of the places the robot is visiting. The environment

model is learned on-line, in real-time as the robot discovers

its surroundings. This method presents many advantages such

as its simplicity, speed, and efficiency but its main limitation

is the lack of metrical information that makes the map ill-

posed for robot guidance (see Fig.1). Indeed, localization is

only possible in previously mapped areas and no information

is stored about the guidance of the robot between places. In

this article, we will present an extension of this method with

the use of metrical information given by the odometry data.

This additional information helps creating a more robust and

efficient algorithm and make it possible to build a consistent

topo-metrical map that is suitable for navigation.

Odometry is often used on robots, whether they be legged

or wheeled, to estimate their position relative to a starting

location. For example, rotary encoders placed on robot wheels

make it possible to compute the relative movement between

the current position and the previous one at any given time.

The main drawback of odometry, is the continuous growth of

error in the position estimate due to the integration of noisy

measurements over time. As a consequence, efficiently using

odometry information requires complementary information to

enable a correction of this cumulative drift errors. In our



Fig. 1. Overview of a topological map of the environment used in our work.

Fig. 2. Inverted index structure used to estimate the likelihood that the
current image is similar with each image stored in the map.

case, this correction will be obtained through the position

constraint given by the visual loop-closure detection when

the robot has returned at the position of a previous passing.

These constraints, integrated through the application of a

relaxation algorithm, will make it possible to estimate a

globally consistent topo-metric map and correct the odometry

estimate. The fusion of vision and odometry sensors will also

make the system more robust, notably in case of vision system

failure (e.g. sensor occlusion, strong lighting change, dark

areas) where odometry alone will be able to keep estimating

the robot position.

A. Topological global localization using Bayesian filtering

Several vision-based techniques consider the problem

of topological SLAM [7][11] or topological localization

[12][13]. The main idea is to seek for the past images that

look similar to the current one and consider they come from

close viewpoint. To solve this image-to-node matching scheme

(based on a similarity measure between the current image and

the images of a node previously visited), two main methods

can be used: maximum likelihood which only consider

the current image for matching (e.g. [13]) or maximum a

posteriori scheme which exploits the similarity of image

sequences to reduce false alarms (e.g. [14]). The Bayesian

filtering framework we are using uses such a maximum a

posteriori method in order to ensure the temporal consistency

of the estimation. A complete description of the approach

is given in [1], but a short overview is provided here for clarity.

This method searches for the node Ni of the map that is

the more similar to the current image It, in other words, it

searches for the node Ni that maximises the probability of

loop-closure with the current image:

Ni = argmaxi=0,...,np(St = i|It, M) (1)

where St = i is event “It comes from Ni” and M =
N0, ..., Nn is the map of the environment.

Bayes rule, marginalization and Markov assumption [1] lead

to the incremental computation of the a posteriori probability

as follow:

p(St|It, M) = η. p(It|St, M)
︸ ︷︷ ︸

likelihood model

.

∑n

j=0
p(St|St−1 = j,M)
︸ ︷︷ ︸

transition model

p(St−1 = j|It−1, M)
︸ ︷︷ ︸

a priori probability
︸ ︷︷ ︸

prediction

In this equation, the prediction is computed using the a

priori probability (i.e. the probability at the previous time

step) multiplied by an evolution model p(St|St−1 = j,M)
taking into account the robot movement since last localization.

In Angeli’s work [15], as no information about the robot

movement is available, a sum of gaussian is used in order

to diffuse the probability of a node to its neighbours.

Then, the similarity of the current image with images stored

in the map is taken into account through the likelihood model

p(It|St, M). This model is computed using a representation

of images as a set of unordered elementary visual features

taken from a dictionary (i.e. the bags of visual words model

[16]). An inverted index makes it possible to very efficiently

compute this likelihood in time linear with the number of

visual words of the current image (see Fig. 2). In our work, two

kinds of visual features are used (SIFT [17] and local colour

histograms) and likelihood is computed using the number of

correspondences between images through a voting scheme. An

interesting point of this approach is the use of an incremental

dictionary to store the visuals words, which do not need any

learning stage before operating in a new environment.

In addition, a ”no loop-closure” event is added as a virtual

location made of the mostly seen visual words. When this last

event is the more probable, the map of the environment is

extended so as to memorize the new place discovered by the

robot.

B. Adding metrical information

The main objective of this work is the integration of metrical

information to the existing topological map and loop-closure

detection algorithm (see Fig. 1) so as to obtain a globally

consistent map with which robot guidance is possible. The

most appealing solution to this problem is probably the use

of visual odometry, where images coming from neighbouring

nodes or image sequences taken between nodes are matched

to estimate the robot displacement [8][7][18][19][20]. Instead

of estimating node positions, another solution is to use visual



servoing, also known as vision-based robot control which uses

feedback information extracted from a vision sensor to control

the motion of a robot [21]. The robot can then be directly

guided to the neighbouring nodes without explicitly computing

their relative positions. The advantage of these solutions is to

use only vision, but they require a lot of processing and are

not robust in absence of visual information, in dark areas for

example.

Following several authors [22][23][24], we have chosen the

simpler solution of using the information given by odometry

data. Although this solution requires a second sensor for

odometry, the information provided efficiently complements

the image data and remains available in situations where visual

information is unavailable. Moreover, the computing power

required by this solution is negligible compared to visual loop-

closure detection.

Beside the capacity to guide the robot, the inclusion of

metrical information in the map also opens the possibility

of using a much more informative evolution model in the

bayesian filter. Through a probabilistic model of odometry,

the evolution model can then take into account not only the

nodes topological proximity, but also their relative position.

This will make it possible to enhance the reactivity of loop-

closure detection, which required several consecutive effective

loop-closure before detection in the original approach.

III. SYSTEM OVERVIEW

The overall processing of the original topological SLAM

framework can be defined as follow:

1) acquire images at 1 Hz.

2) extract features from the image and reject image if it is

too similar with the previous one.

3) compute likelihood for loop-closure with each place of

the map, then predict and update the probabilities of

each place and multiply by likelihood to obtain the a

posteriori probability.

4) check and sort the probabilities higher than a threshold

(i.e. potential loop-closure detection).

5) verify in the descending order the potential loop-closure

detection by multiple-view geometry [25].

The inclusion of odometry information to complement vi-

sual sensor and to obtain a topo-metrical mapping required

four main modifications (see Fig. 3):

• in step 1, images are now acquired when the robot has

moved for a given distance or turned of a given angle and

relative odometry since last processed image is recorded.

• in step 3, the gaussian transition model is replaced by an

odometry based transition model.

• in step 5, the acceptance test is modified to constrain

loop-closure to be detected only for very close locations.

• a new step 6 is added to memorize the relative position

between nodes on each link of the graph and to apply a

relaxation algorithm each time a loop-closure is detected

to correct cumulative odometry drift.

A. Mapping and graph relaxation

The topological map is constituted of a set of nodes as-

sociated with an image and linked by edges. We integrated

Fig. 3. Processing diagram of the topo-metrical map construction. The
orange boxes indicate the steps modified or added after inclusion of odometry
information.

Fig. 4. Illustration of the graph relaxation process used to correct the map.

metrical information in two forms in order to produce a topo-

metrical map. First, each node is associated with an absolute

position in the map (x, y, θ), where x and y are the 2D position

coordinates and θ an angle representing the direction of the

robot when the image was taken. Secondly, the edges are

associated with a relative position between two nodes defined

by (d, α, φ), where d and α are the polar coordinates of the

second node in the coordinate space of the first, and φ is the

difference angle between the two nodes direction.



During the localization and mapping process, each time a

new image is acquired, a new location is created. When a loop-

closure is detected this location is added as a similar location

to the existing loop-closing node. In this case, the robot is

assumed to have returned exactly at the position of a previous

passing by constraining the two nodes to have the same

position. This hypothesis is justified by the acceptance policy

of loop-closure (step 5 of the algorithm) that has been modified

to only accept loop-closure with very close views thereby

allowing only small variations between the corresponding

positions and orientations. This acceptance policy require that

90% of the SIFT points matched between the two images

validate the epipolar geometry constraints, and additionally,

that the total displacement of these points in the image space

is below a threshold.

Due to the cumulative noise of odometry, the map is not

coherent after a loop-closure detection (i.e. the position of

similar nodes are different) and it is necessary to correct

the position of each node. To do so, we apply a relaxation

algorithm to estimate the position of nodes that best satisfied

the loop-closure constraints (see Fig. 4). The relaxation algo-

rithm we chose is the Tree-based netwORk Optimizer (TORO)

[26], because of its speed and its high efficiency. TORO is

an extension of Olson’s algorithm [27] which introduced a

tree-based parametrization for the nodes in the graph. This

technique solves the problem of learning maximum likelihood

maps for mobile robots. It is based on a graph-formulation

of the simultaneous localization and mapping problem and

applies a gradient descent-based optimization scheme. The

method is very fast and is called each time a new loop-closure

is found to estimate the consistent node configuration which

maximally satisfy the odometry constraints between nodes.

It must be noted that false positive loop-closure detections

have to be avoided when we apply the relaxation because this

would result in a map totally incoherent with the real environ-

ment. The Bayesian visual loop-closure detection we use is

robust enough to make this assumption and is parametrized to

avoid false positives, at the cost of missing some true positive.

B. Including odometry in the evolution model

In the original framework, the evolution model used to

obtain the prediction given the a priori probability applied

a diffusion of the probability over the neighbouring loca-

tions in the graph. The weight was defined as a sum of

gaussian centered on the current location (see Fig. 5, Top).

The limitation of this model is that diffusion is done in all

directions without preference, because it only assume that the

neighbouring images in time are close together, without any

information about the real robot movement.

Because a reliable metrical information is now available,

we integrate odometry in the evolution model to predict more

precisely the evolution of the probability. Thus, starting from a

given node, we distribute the probability to each neighbouring

location in the map depending on the deviation of these nodes

relative positions with the robot displacement since the last

update du, αu, φu measured by odometry (see Fig. 5, Bottom).

We used the standard motion model for robot odometry [28],

Fig. 5. Illustration of the modification of the evolution model. Top : The
original model only take the graph connectivity into account when propagating
probability from node j to node i. Bottom : Including odometry, the new
evolution model is more precise and preferentially propagate probability from
node j to the nodes i that correspond to a movement coherent with the
odometry.

assuming gaussian noise on the robot displacement measured

in polar coordinates:

p(d, α, φ|du, αu, φu) =

Gµd,σd
(d − du)Gµθ,σθ

(α − αu)Gµφ,σφ
(φ − φu)

where d, α gives the odometry displacement in polar coordi-

nates in the frame of the previous robot position and φ is the

variation of robot direction during movement. Gµ,σ(X) is the

gaussian distribution of mean µ and variance σ2.

Using this model, the evolution model becomes:

p(Si|Sj , ut, M) =

Gµd,σd
(dij − du)Gµθ,σθ

(θij − θu)Gµφ,σφ
(φij − φu)

where ut = du, θu, φu gives the odometry displacement and

dij , θij , φij is the relative position between nodes i and j.

The substitution makes the prediction of the a posteriori

probability more precise, improving robustness and respon-

siveness of the algorithm.

IV. EXPERIMENTAL RESULTS

To demonstrate the quality of the approach we have used

data acquired with a Pionner 3 DX mobile robot. The robot

was guided to do some loops in an indoor environment

showing strong perceptual aliasing conditions (several distinct

places looks similar). Figure 7 shows image samples taken

from this run. The path of the experiments as measured by

odometry is shown on the top of Fig. 6. As a landmark we

stop the run precisely on the path previously taken (and with



Fig. 6. Top: Topo-metrical map generated using only the relative odometry
given by the robot, without loop-closure detection. Bottom : Topo-metrical
map generated with the presented framework using relaxation after each loop-
closure detection. Run length ≈ 40m.

Fig. 7. Samples of the image sequence used in our experiment.

the same direction). The images and the odometry relative

information were taken each time the robot move at least

50 cm or turn of at least 30 degrees. On this example, the

odometry drift is quite low, but we can see that the loop-

closures are correctly detected and that the result of the

relaxation provides correct results (Fig. 6, Bottom, 8).

The use of odometry in the evolution model improves

the responsiveness of the algorithm: during the experiment,

only two consecutive similar frames are now required before

effective loop-closure detection, instead of three or four with

the original model and successive loop-closure are always

detected when taking a path that has already been taken (Fig.

/refexperiment). Multiple loop-closure detection on the same

node while the robot is moving and loop-closure detection

from distant places which make the map not consistent with

the environment are also discarded, thanks to the odometry

consideration and the use of drastic loop-closure acceptance

conditions. The new image acquisition policy enforces a more

regular sampling of positions in the environment, independent

of the robot velocity and also reduces the computational

burden of the algorithm when the robot is not moving.

V. CONCLUSION AND FUTURE WORK

We have introduced in this paper a system that is able to

build a topo-metrical map in real time while a robot is discov-

ering an unknown environment. The developed framework is

an extension of Angeli’s work on real time visual loop-closure

detection [1] to which we added metrical information given

by robot odometry to build a topo-metrical map instead of the

existing topological map and replaced the evolution model of

the Bayesian filter with a new odometry-based model.

The algorithm, which only requires a monocular camera and

odometry data, is more robust, more responsive and still does

not require any a priori information on the environment. It is

a simple solution, which works in real-time and which can be

easily embedded on medium platforms. The resulting map is

now geometrically consistent and is usable for robot guidance.

Our future work will be to optimise visual processing to

reduce computational cost and to implement this framework

on mobile toy robots using remote processing methods. Using

remote processing will notably require to embed odometry

processing and guidance on the platform while performing

image processing and relaxation on remote servers in an

asynchronous process.
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