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b ENSTA-UME, Chemin de la Hunière, 91761 Palaiseau Cedex, France
Abstract

This paper is devoted to the derivation and the analysis of vibrations of shallow spherical shell subjected to large
amplitude transverse displacement. The analog for thin shallow shells of von Kármán�s theory for large deflection of
plates is used. The validity range of the approximations is assessed by comparing the analytical modal analysis with
a numerical solution. The specific case of a free edge is considered. The governing partial differential equations are
expanded onto the natural modes of vibration of the shell. The problem is replaced by an infinite set of coupled sec-
ond-order differential equations with quadratic and cubic non-linear terms. Analytical expressions of the non-linear
coefficients are derived and a number of them are found to vanish, as a consequence of the symmetry of revolution
of the structure. Then, for all the possible internal resonances, a number of rules are deduced, thus predicting the acti-
vation of the energy exchanges between the involved modes. Finally, a specific mode coupling due to a 1:1:2 internal
resonance between two companion modes and an axisymmetric mode is studied.

Keywords: Shallow spherical shells; Geometrical non-linearities; Internal resonances, Non-linear vibrations
1. Introduction

Structures with a thin geometry, like beams, arches, plates and shells, can exhibit large amplitude flexural
vibrations, whose magnitude is comparable to the order of their thickness. In those cases, typical non-linear
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behaviors can be observed, such as jump phenomena and energy exchanges between modal configurations
and a linear prediction model is not sufficient (Nayfeh and Mook, 1979). In this paper, von Kármán
non-linear dynamic equations are used in the special case of a shallow spherical cap in order to predict
and simulate the observed phenomena.

In the literature devoted to geometrically non-linear (finite-amplitude) vibrations of shells, the largest
part of the studies is concerned with circular cylindrical shells. The interested reader can refer to the
exhaustive review proposed by (Amabili et al., 1998). For the case of spherical caps, most of the studies
including geometrical non-linearities deal with axisymmetric deflections of perfectly symmetric structures.
Moreover, the focus is generally put on dynamic buckling and snap-through behavior, whereas vibratory
responses are seldom treated. Some works dealing with non-linear vibration of shells are briefly reviewed
here and the interested reader can refer for a thorough bibliography to reviews of the literature by Leissa
(1993b), Qatu (2002), Moussaoui and Benamar (2002) as well as the recent paper by Amabili and
Paı̈doussis (2003). Evensen and Evan-Iwanowsky (1967) proposed a very complete work, analytical
and experimental, and investigate buckling as well as non-linear vibrations of a clamped-edge spherical
cap with the harmonic balance method. Gonçalves (1994) addressed the same problem, with geometrical
imperfections, and used a Galerkin method with the analytical expressions of the mode shapes to solve the
problem. Ye (1997) used a numerical Runge–Kutta method to solve the same problem. However, those
studies are restricted to vibrations involving only one axisymmetric mode. A detailed study is proposed by
Yasuda and Kushida (1984) who investigated the multi-mode axisymmetric response of a clamped spher-
ical cap. The special case of a 1:2 internal resonance between two axisymmetric modes was addressed both
theoretically and experimentally. Grossman et al. (1969) investigated the free oscillations axisymmetric
frequencies dependence with the deflection amplitude, as a function of both the curvature of the shell
and the boundary conditions. All those studies are restricted to axisymmetric vibrations. However, even
if the excitation pattern is rotationally symmetric, a complete realistic study has to include asymmetric
vibrations, since non-linear coupling between any modal configuration is likely to appear. Hui (1983) ad-
dressed one-mode asymmetric vibrations of a complete spherical shell with geometric imperfections and
structural damping. To the knowledge of the authors, no analytical studies on non-linear multi-mode
asymmetric vibrations of spherical shells have been published and the present work aims at filling this
gap.

Spherical caps can be considered as a reference problem, mainly because their vibrations display impor-
tant non-linear behaviors that are commonly observed in large deflection vibrations of thin structures.
Firstly, as a consequence of the multiplicity of two of eigenfrequencies associated to asymmetric
modes—a common feature of structures with an axisymmetric geometry (see e.g. Morand and Ohayon,
1995, Chapter 1)—1:1 internal resonances between companion modes are numerous and give rise to a vari-
ety of complex vibratory patterns, including traveling waves (see e.g. Tobias and Arnold, 1957; Raman and
Mote, 2001; Touzé et al., 2002). Secondly, the curvature of the structure adds quadratic non-linearities in
the oscillators that govern the dynamics of the system, whereas only cubic terms are present in the case of
transversely symmetric structures such as rods and plates (Thomas et al., 2001). Thirdly, the spectral con-
tent of spherical shells depends on one geometrical parameter related to the curvature. Particular algebraic
relations between natural frequencies can then be obtained for specific values of the curvature. As a con-
sequence, numerous internal resonances that are related to both quadratic and cubic non-linear terms are
likely to be observed on spherical shells. An example addressed in the present work is the 1:1:2 internal res-
onance between an axisymmetric mode and two companion modes.

The main goal of this paper is to present a exhaustive method for analysis and prediction of the large
amplitude vibratory response of spherical shells, from the governing equations to their resolution. It ex-
tends a study on non-linear vibrations of circular plates (Touzé et al., 2002) to the case a curved shallow
geometry. The non-linear behavior and the possible energy transfers between modal configurations related
to the perfect axisymmetric geometry of the structure are especially addressed, extending results of the
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literature. The free-edge boundary conditions have been chosen mainly because they are the easiest to
realize experimentally. However, the results of the present study can be extended to any type of boundary
conditions, provided they are in accordance with the rotational symmetry of the problem.

The non-linear partial differential equations (PDE) that govern the oscillations of the shell are ex-
panded onto its eigenmodes. The main underlying assumptions of the model, as well as the hypothesis
of shallowness, are discussed. Complete analytical expressions of the eigenmodes of the associated linear
problem are derived and compared to a numerical solution. After expansion of the PDE onto the eigen-
modes, a set of coupled second-order ordinary differential equations with quadratic and cubic non-
linearities is obtained. The coefficients of the non-linear terms are calculated in the case of a perfect
axisymmetric geometry and the coupling rules for the modal interactions are deduced. Possible truncation
of the infinite dimensional problem are evaluated. Finally, the particular case of a 1:1:2 internal resonance
is precisely investigated by a perturbation method, in the case of a harmonic forced excitation. The effect
of slight imperfections of the structure is simulated by introducing slight differences in the companion
modes frequencies. Experimental validations of the theoretical results will be presented in a forthcoming
paper.
2. Formulation of the problem

2.1. Local equations

A spherical shell of thickness h, radius of curvature R and outer diameter 2a, made of a homogeneous
isotropic material of density q, Poisson�s ratio m and Young�s modulus E, is considered. The geometry is
specified in Fig. 1.

The equations of motions for shallow shells subjected to large deflections and moderate rotations, with
small strain so that Hooke�s law is verified, were derived by various authors in the case of particular geom-
etries: Donnell (1934) and Evensen and Fulton (1965) for cylinders, Marguerre (1938), Leissa and Kadi
(1971) and Alhazza (2002) for curved panels, Mushtari and Galimov (1961) and Koiter (1965) in the gen-
eral case. A recent work presents a justification of these equations by an asymptotic method (Hamdouni
and Millet, 2003). These equations have taken several names in the past: Donnell�s equations, Marguerre�s
Fig. 1. Geometry of the shell: three-dimensional sketch and cross section.
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equations, Koiter�s equations or von Kármán�s equations. They correspond to a generalization to the case
of a curved geometry of von Kármán�s model for large-deflection vibrations of plates (see e.g. Chu and
Herrmann, 1956).

The main hypotheses are the following (see e.g. Koiter, 1965; Soedel, 1981):

• the shell is thin: h/a� 1 and h/R� 1;
• the shell is shallow: a/R� 1;
• the transverse normal stress are neglected with respect to the other stresses;
• Kirchhoff–Love hypotheses are used: the shear-strains are neglected and the normals to the undeformed

mid-surface remain straight and normal and suffer no extension during the deformation;
• rotations of normals to the mid-surface are moderate, so that their sine and cosine are linearized (mod-

erate rotations hypothesis);
• only the non-linear terms of the lowest order are kept in the strain expressions;
• the material is linear elastic, homogeneous and isotropic;
• in-plane and rotatory inertia are neglected;
• there is no membrane external forcing, which enables the use of an Airy stress function F.

With these assumptions fulfilled, one obtains the equations of motion in terms of the transverse displace-
ment w along the normal to the mid-surface and the Airy stress function F, for all time t
DDDw þ 1

R
DF þ qh€w ¼ Lðw; F Þ � c _w þ p; ð1aÞ

DDF � Eh
R

Dw ¼ �Eh
2

Lðw;wÞ; ð1bÞ
where D = Eh3/12(1 � m2) is the flexural rigidity, c is a damping coefficient, p represents the external normal
pressure, €w is the second partial derivative of w with respect to time, D is the Laplacian and L is a bilinear
quadratic operator. With the assumption that the shell is shallow, angle u defined in Fig. 1 is small and we
get
sin u ’ u; r ¼ R sin u ’ Ru: ð2Þ
Hence, the position of any point of the middle surface of the shell can be measured by its polar coordinates
(r,h), r 2 [0;a] and h 2 [0;2p] and the operators D and L of Eqs. (1a) and (1b) can be written
Dð	Þ ¼ ð	Þ;rr þ
1

r
ð	Þ;r þ

1

r2
ð	Þ;hh ð3Þ
and
Lðw; F Þ ¼ w;rr
F ;r

r
þ F ;hh

r2

� �
þ F ;rr

w;r

r
þ w;hh

r2

� �
� 2

w;rh

r
� w;h

r2

� � F ;rh

r
� F ;h

r2

� �
; ð4Þ
where (Æ),ab = o2(Æ)/oaob. Expressions of F as a function of membrane stresses can be found in Touzé et al.
(2002). Quadratic operator L defined by Eq. (4) has the same expression as in von Kármán�s equations for
circular plates (Efstathiades, 1971). A proof of Eqs. (1a) and (1b) can be obtained after writing the doubly
curved panel equations formulated in Leissa and Kadi (1971) in polar coordinates.

The shallowness assumptions of Eq. (2) are valid as long as sinu0 ’ u0 (u0 is defined on Fig. 1). The
corresponding shell geometries and limiting values of u0 are summarized in Fig. 2.



Fig. 2. Shell geometry so that Eqs. (2) are fulfilled, with sinu0=a/R. Parameters are defined on Fig. 1.
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2.2. Free-edge boundary conditions

Boundary conditions are similar to those of a free-edge circular plate (Touzé et al., 2002) which yields for
all t and h
F and w are bounded at r ¼ 0; ð5aÞ

F ;r þ
1

a
F ;hh ¼ 0; F ;rh �

1

a
F ;h ¼ 0; at r ¼ a; ð5bÞ

w;rr þ
m
a
w;r þ

m
a2

w;hh ¼ 0; at r ¼ a; ð5cÞ

w;rrr þ
1

a
w;rr �

1

a2
w;r þ

2 � m
a2

w;rhh �
3 � m
a3

w;hh ¼ 0; at r ¼ a: ð5dÞ
The above equations stems from the vanishing of the external load at the edge: Eqs. (5b) are related to the
membrane forces, Eq. (5c) to the bending moment and Eq. (5d) to the twisting moment and transverse
shear force.

2.3. Dimensional analysis

Equations of motion (1a) and (1b) group different terms. On the one hand, terms DF in Eq. (1a) and Dw
in Eq. (1b) are responsible for a linear coupling between transverse motion and membrane stretching, stem-
ming from the curved geometry of the shell. On the other hand, terms L(Æ, Æ) in both equations produce a
non-linear coupling. Those two effects are independent from each other, since operator L is independent of
curvature R. If R tends to infinity, one obtains von Kármán�s equations (Efstathiades, 1971) for geometri-
cally non-linear plates and if L(Æ, Æ) vanishes, linear Donnell–Mushtari–Vlasov�s model (Soedel, 1981) for
shallow shells is obtained.

As the longitudinal inertia is neglected, F is slaved to transverse displacement w. Eq. (1b) shows that F
contains both a linear and a quadratic term in w. By substituting F in Eq. (1a), one can show that curvature
and non-linear coupling create together a linear, a quadratic and a cubic term in the equation that governs
w, the first two terms arising from curvature. In order to balance their magnitude, dimensionless quantities
(denoted by overbars) are introduced
w ¼ w0�w; F ¼ F 0
�F ; r ¼ a�r; t ¼ T 0�t; with T 0 ¼ a2

ffiffiffiffiffiffi
qh
D

r
: ð6Þ
w0 and F0 will be specified next. Substituting these variables in Eqs. (1a) and (1b) and omitting for clarity
damping and forcing terms, one obtains for Eq. (1a)
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DDw þ €w ¼ �vf�wg þ 1

2
eqf�w2g � ecf�w3g; ð7Þ
where f�wng denotes a dimensionless term proportional to �wn supposed to be O(1). The order of magnitude
of the different terms in Eq. (7) are specified by the following dimensionless factors:
linear term f�wg : v ¼ Eha4

DR2
¼ 12ð1 � m2Þ a4

R2h2
; ð8aÞ

quadratic term f�w2g : eq ¼ Eha2

DR
w0 ¼ 12ð1 � m2Þ a2

Rh2
w0; ð8bÞ

cubic term f�w3g : ec ¼
Eh
D

w2
0 ¼ 12ð1 � m2Þw

2
0

h2
: ð8cÞ
From these developments it appears naturally that curvature adds a linear term, which depends on the
geometry of the shell only (parameter v): it corresponds to the increase of transverse rigidity of the structure
brought by the linear coupling between transverse motion and mid-plane stretching. It will be shown that v
brings a correction to the shell eigenfrequencies compared to those of the corresponding plate (Section 3.1).

Non-linear terms have the order of magnitude of eq and ec, which depends on the scaling w0 of transverse
displacement. As
ec ¼ e2
q=v; ð9Þ
we find that cubic terms are of one order of magnitude smaller than that of quadratic terms. It is the usual
scaling chosen for those terms when a perturbation method is used to solve the problem, so that these terms
appear successively in the perturbative scheme (Nayfeh and Mook, 1979). We can also remark that the
coefficient of cubic terms ec is independent of curvature R and that it is equal to the value it has in the case
of a plate.

As a consequence, the balance between the magnitudes of the different terms is governed by the order of
magnitude of transverse displacement w0 only. Table 1 summarizes values obtained for eq and ec, for var-
ious choices of w0 as compared to h. If the deflection is of the same order as the thickness (say w0 = h), eq
and ec are greater than 1, no small parameter appears in Eq. (7) and non-linear terms are of a larger order
than linear terms. If the deflection is chosen one order smaller than h (i.e. w0 = h2/a), cubic terms only are
small compared to the linear ones. This is the usual scaling chosen in the case of plate (Sridhar et al., 1978;
Touzé et al., 2002). When curvature is non-negligible, one has to choose deflection two orders smaller than
1
tical values and order of magnitude of eq and ec for various choice of transverse displacement scaling w0 and shell geometries
0 corresponds to a plate)

h/a v w0 = h w0 = h2/a w0 = h3/a2

eq ec eq ec eq ec
12ð1�m2Þa2

Rh 12(1 � m2) 12ð1�m2Þa
R

12ð1�m2Þh2

a2

12ð1�m2Þh
R

12ð1�m2Þh4

a4

0.01 0 0 10 0 10�3 0 10�7

0.1 0 0 10 0 10�1 0 10�3

0.01 10 10 10 10�1 10�3 10�3 10�7

0.1 0.1 1 10 10�1 10�1 10�2 10�3

0.01 1000 102 10 1 10�3 10�2 10�7

0.1 10 10 10 1 10�1 10�1 10�3

nd ec are defined by Eqs. (8a)–(8c).
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thickness (w0 = h3/a2) to obtain both quadratic and cubic terms smaller than the linear ones. This is the
solution adopted here since a perturbation method will be used in Section 5 to solve Eqs. (1a) and (1b).
The above developments about scaling of the deflection w0 show that non-linear phenomena become sig-
nificant in curved structures for deflections of an order of magnitude between h3/a2 and h2/a, smaller than
in the case of plates.

The scaling F0 of the stress function is chosen so that dimensionless variable F is O(1) when
DDF ’ �1=2Lðw;wÞ in Eq. (1b). This solution is suitable for any R, especially if R tends to infinity (the case
of a plate). The following dimensionless variables are then defined:
r ¼ a�r; t ¼ a2
ffiffiffiffiffiffiffiffiffiffiffi
qh=D

p
�t; w ¼ h3=a2�w; F ¼ Eh7=a4�F ; ð10aÞ

c ¼ ½2Eh4=Ra2

ffiffiffiffiffiffiffiffiffiffiffi
qh=D

p
�l; p ¼ Eh7=Ra6�p: ð10bÞ
Substituting the above definitions in equations of motion (1a) and (1b) and dropping the overbars in the
results, one obtains
DDw þ eqDF þ €w ¼ ecLðw; F Þ þ eq½�2l _w þ p
; ð11aÞ

DDF � a4

Rh3
Dw ¼ � 1

2
Lðw;wÞ; ð11bÞ
where eq = 12(1 � m2)h/R and ec = 12(1 � m2)h4/a4. Boundary conditions (5a)–(5d), take the same form,
with a = 1. Forcing and damping terms are scaled to the order of quadratic terms since only those nonlinear
terms will be retained in the study of Section 5.
3. Modal analysis of the linear problem

3.1. Eigenfrequencies and mode shapes

An analytical expression of the natural frequencies of vibration of spherical shells with free-edge, axi-
symmetric as well as asymmetric, was proposed by Johnson and Reissner (1956). The main steps of the der-
ivation of the expressions of the natural frequencies and mode shapes can be found in Appendix A and only
some remarks are considered here.

The eigenmodes of the problem are the solutions of
DDU þ vDW � x2U ¼ 0; ð12aÞ

DDW ¼ DU: ð12bÞ

They depend on one geometrical parameter only, the curvature parameter v, that includes the joint influ-
ence of R, a and h. Transverse and membrane mode shapes Ukn(r,h) and Wkn(r,h) have k nodal diameters
and n nodal circles. Associated dimensionless angular frequencies xkn are related to their dimensioned
counterpart fkn (in Hz) by the formula
fkn ¼
1

2pa2

ffiffiffiffiffiffi
D
qh

s
xkn ¼

h
2pa2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

12qð1 � m2Þ

s
xkn: ð13Þ
As membrane inertia is neglected, membrane motion is slaved to transverse motion. There are no mem-
brane natural frequencies and each eigenfrequency xkn is associated to Ukn(r,h) and Wkn(r,h) (Kalnins,
1964).
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The modes with at least one nodal diameter (k P 1) are called asymmetric modes. Each associated eigen-
frequency has a multiplicity of two and the two corresponding independent modes are called companion or
preferential configurations. The deformed shape of the first deduces from the other by a rotation of p/2k
around the symmetry axis.

3.2. Dependence on curvature

Fig. 3 shows the evolutions of several eigenfrequencies xkn with curvature parameter v and suggests to
classify the modes in two families.

• The first family groups all asymmetric modes (k, 0) with k nodal diameters (k P 2 since mode (1,0) is a
solid-body mode) and no nodal circles. These modes can be called purely asymmetric, and their natural
frequencies only slightly depend on the curvature (Fig. 3). Their deformed shape is shown in Fig. 4 and
their dependence on v is shown on Fig. 5. Their transverse deformed shapes U only slightly depend on
the curvature and on the contrary, membrane deformed shapes W show a significant dependence on
curvature.

• The second family groups axisymmetric modes (0,n) with n nodal circles and asymmetric modes with at
least one nodal circle (thus called mixed modes), since their frequencies increase with curvature and are
always sorted in the same order (Fig. 3). Their deformed shape is shown in Fig. 6. For k 2 {0,1} the
deformed shape do not depends on curvature (see Eq. (A.14) in Appendix A). For k P 2, the dependence
is almost not visible (see Fig. 7), for both transverse and membrane modes.
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Fig. 4. First three asymmetric mode shapes Ukn(r,h) with no nodal circles, classified in ascending order of their frequencies.
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their frequencies.
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This analysis of the linear properties of the shell have importance even if one is interested in analyzing
the non-linear vibratory regimes. The values of the natural frequencies governs the possible internal
resonances relationships between modes and thus the possible modal interactions. This will be addressed
in Section 4.2. The spatial dependence of the mode shapes are directly related to the values of the



0 0.2 0.4 0.6 0.8 1

–1

–0.5

0

0.5

1
Φ

kn
 p

ro
fil

e

Radius r [adim]
0 0.2 0.4 0.6 0.8 1

0

0.5

1

Ψ
kn

 p
ro

fil
e

Radius r [adim]

(0,1)

(2,1)

(0,1)

(1,1)
(1,1)

(2,1)

Fig. 7. Profiles of theoretical axisymmetric (0,1) and asymmetric (1,1) and (2,1) mode shapes, for a/R 2 [0,0.6]: (left) transverse mode
and (right) membrane mode.

9

coefficients of the non-linear terms that governs the exchanges of energy between modes. This will be
addressed in Sections 4.3 and 4.4

3.3. Comparison with a numerical solution

In order to precise the validity range of the assumptions of shallowness of Eq. (2), theoretical results
of Section 3.1 are compared to a numerical modal analysis, using the finite elements code CASTEM 2000CASTEM 2000

(Verpeaux et al., 1988) with DKT elements. Fig. 8 shows that the shallow theory predicts the natural fre-
quencies with an error less than 1%, provided that a/R < 0.3. This result is in agreement with Table 2. A
similar result has been established by Kalnins (1964) who compared the analytical natural frequencies stem-
ming from (12a) and (12b) written in spherical coordinates—the so called non-shallow shell theory—to
those of the shallow theory, derived by Johnson and Reissner (1956) and used in the present study.
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Table 2
Conditions on the number of nodal diameters and the expression in sine and cosine of the modes (both conditions must be fulfilled
simultaneously) that lead to non-zero coefficients bs

pq and Cs
pqu

bs
pq 6¼ 0

+
ks 2 fkp þ kq; j kp � kq jg

Cs
pqu 6¼ 0

+
fkp þ kq; j kp � kq jg \ fks þ ku; j ks � ku jg 6¼ ;

Us Up Uq Up Uq Us Uu

cos cos cos cos cos cos cos
sin sin cos cos sin sin

sin cos sin sin sin cos cos
sin cos sin sin sin sin

cos sin cos sin
cos sin sin cos
sin cos sin cos
sin cos cos sin
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In order to study vibrations of shells with large curvature, it is possible to use in the following: (i) the
eigenmodes calculated with a theoretical modal analysis in spherical coordinates (Kalnins, 1964), or (ii)
to use numerical eigenmodes, calculated for example with the finite element method (see e.g. Lobitz
et al., 1977, in the case of irregular plates). These tasks are beyond the scope of this article.
4. Modal expansion

4.1. Analytical expressions of the coupling coefficients

The aim of this section is to find a solution to the governing non-linear partial differential equations (11a)
and (11b). The transverse deflection is expanded on the eigenmodes of the associated linear problem. The
solution is sought as
wðr; h; tÞ ¼
Xþ1

p¼1

Upðr; hÞqpðtÞ: ð14Þ
The fqpgp2N� are unknown functions of time—the modal coordinates—and Up is the pth mode shape of the
shell with free edge, whose analytical expression is given in Appendix A.

First, Eq. (11b) is solved by considering that
F ¼ F 1 þ F 2 with DDF 1 ¼
a4

Rh3
Dw; ð15aÞ

DDF 2 ¼ � 1

2
Lðw;wÞ: ð15bÞ
Eq. (15a) has already been solved for computing the linear modes in Section 3.1. Eq. (15b) shows the same
form as for a circular plate (v = 0). It can be solved by using functions � b(r,h) that exhibit the same spatial
dependence as the transverse mode shapes of a clamped circular plate (Touzé et al., 2002). Their expression,
along with the values of zeros nb, can be found in Appendix B. Finally, the stress function is written
F ðr; h; tÞ ¼ F 1 þ F 2 ¼
a4

Rh3

Xþ1

b¼1

Wbðr; hÞqbðtÞ þ
Xþ1

b¼1

� bðr; hÞ
Xþ1

p¼1

Xþ1

q¼1

Gb
pqqpðtÞqqðtÞ

!
ð16Þ
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with
Gb
pq ¼ � 1

2n4
b

ZZ
S?

LðUp;UqÞ� bdS and

ZZ
S?

� 2
bdS ¼ 1; ð17Þ
where S? is the projected surface S of the shell, i.e. the domain defined by ðr; hÞ 2 0 1½ 
 � ½0 2p
.
This solution can now be substituted into (11a). Using Eq. (12a), multiplying by Us, integrating over S?

and using the orthogonality properties of the modes leads to, for all s P 1
€qsðtÞ þ x2
s qsðtÞ ¼ eq �

Xþ1

p¼1

Xþ1

q¼1

bs
pqqpðtÞqqðtÞ � 2ls _qsðtÞ þ ~QsðtÞ

" #

� ec

Xþ1

p¼1

Xþ1

q¼1

Xþ1

r¼1

Cs
pqrqpðtÞqqðtÞqrðtÞ; ð18Þ
where modal damping ls, depending on mode Us, has been considered. Expressions of ~QsðtÞ; bs
pq and Cs

pqr

are
~QsðtÞ ¼
ZZ

S?

Usðr; hÞpðr; h; tÞdS; ð19Þ

bs
pq ¼ �

ZZ
S?

UsLðUp;WqÞdS � 1

2

Xþ1

b¼1

1

n4
b

ZZ
S?

LðUp;UqÞ� bdS
ZZ

S?

UsD� b dS; ð20Þ

Cs
pqu ¼

1

2

Xþ1

b¼1

1

n4
b

ZZ
S?

LðUp;UqÞ� b dS
ZZ

S?

UsLðUu; � bÞdS; ð21Þ
with, for all p P 1
ZZ
S?

U2
pdS ¼ 1: ð22Þ
4.2. Reduced-order model

The initial problem described by the set of coupled partial differential equations (11a) and (11b) has been
replaced by the equivalent discretized problem of the set (18) of non-linear coupled differential equations
together with Eq. (14). At this stage, various approaches—analytical, numerical or a combination of
both—can be used to solve the problem. In each cases, one has to truncate the set (18) to a finite number
of oscillators. This operation has to be carefully performed, since a too crude truncation lead to predict
erroneous results for the trend of non-linearity (see e.g. Nayfeh et al., 1992; Amabili et al., 1999; Touzé
et al., 2004). The non-linear normal modes and the normal form theory offers a theoretical framework that
allows to properly truncate the set (18) (see e.g. Touzé et al., 2004; Touzé and Thomas, 2004). In particular,
it is shown that all the non-linear modes involved in internal resonances must be retained in the analysis. In
our problem with quadratic and cubic non-linear terms, internal resonances are defined by the possible fol-
lowing relations between the natural frequencies of the shell:
quadratic : xp ’ 2xq or xp ’ xq � xk; ð23aÞ

cubic : xp ’ 3xq or xp ’ 2xq � xk or xp ’ xq � xk � xm: ð23bÞ
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4.3. Coupling rules

For a perfect axisymmetric structure, mode shapes with k nodal diameter are written in terms of coskh
and sinkh. As coefficients bs

pq and Cs
pqu involve integrations of products of those functions (see Eqs. (20) and

(21)), a number of them vanish. The goal of the present section is to exhibit some rules that determine which
coefficients vanish and consequently which modal interactions are possible. The mathematical derivations
can be found in Appendix C.

Conditions for bs
pq and Cs

pqu to be non-zero are summarized in Table 2. They depend on (i) the number of
nodal diameters ks, kp, kq and ku of the modes Us, Up, Uq and Uu involved in the calculation of bs

pq and Cs
pqu

and (ii) the angular dependence in coskh or sinkh of each of Us, Up, Uq and Uu. The number n of nodal
circles has no influence.

Among those coefficients, some of them are involved in resonant non-linear terms. Those terms are called
resonant because they can be viewed as forcing terms that excite a particular mode close to its resonance,
when internal resonances relations between the natural frequencies exist. They are thus responsible for
strong coupling—and thus large energy exchanges—between modal configurations. They cannot be re-
moved by the computation of the normal form and thus govern the dynamics of the system (Guckenheimer
and Holmes, 1983). As some coefficients vanish, the corresponding resonant terms are canceled and certain
energy exchanges are impossible, even if relations of the form of Eqs. (23a) and (23b) are fulfilled. The end
of this section exhibits a few rules that enable to predict the possible modal interactions.

In order to determinate if a particular modal interaction is possible, one has (i) to check if any of Eqs.
(23a) and (23b) is fulfilled and (ii) to check if the associated resonant terms are non zero, using the following
rules that hold on the number of nodal diameters of the involved modes. The rules holding on the nature in
sine or cosine of companion modes are secondary because they cannot be responsible of cancellation of all
resonant terms in a particular internal resonance. They are thus not addressed here.

The first rule stands that all axisymmetric modes can be involved in modal interactions with one another, by
both order-two (Eq. (23a)) and order three (Eq. (23b)) internal resonances. Studies on modal interactions be-
tween axisymmetric modes were proposed by Sridhar et al. (1975) for circular plates and by Yasuda and
Kushida (1984) in the case of spherical shells. The other rules, specifically related to particular internal res-
onances involving asymmetric modes, are given below. One should keep in mind that two asymmetric
modes with natural frequencies such that x2 > x1 can have their numbers of nodal diameters such that
k2 < k1: this situation exists if the numbers of nodal circles are such that n2 > n1 (see e.g. Fig. 3).

4.3.1. Order-two internal resonances

The coupling rules are summarized in Tables 3 and 4. Each table specifies the internal resonance consid-
ered (first line), the involved modes (second line), the resonant terms (third line) and the general conditions
Table 3
Rules determining if modal interaction between modes U1 and U2 is possible, when internal resonance x2 = 2x1 is fulfilled

x2 = 2x1

Modes U1 (x1, k1) U2 (x2, k2)
Resonant terms q1q2 q2

1

Rules k1 2 {k1 + k2,jk1 � k2j} 5 ; k2 2 {2k2,0} 5 ;
Nature of involved modes Modal interaction

Both modes axisymmetric: k1 = k2 = 0 Possible
Only mode U1 asymmetric: k1 5 0, k2 = 0 Possible "k1

Only mode U2 asymmetric: k1 = 0, k2 5 0 Impossible
Both modes asymmetric: k1 5 0, k2 5 0 Possible if k2 = 2k1

kp is the number of nodal diameters of mode Up, and qp is the time evolution of mode Up in set (18).



Table 4
Rules determining if modal interaction between modes U1, U2 and U3 is possible, when internal resonance x3 = x1 + x2 is fulfilled

x3 = x1 + x2

Modes U1(x1,k1) U2 (x2,k2) U3(x3,k3)
Res. terms q2q3 q1q3 q1q2

Rule for all three res. terms: k1 2 {k2 + k3, jk2 � k3j} 5 ;
Nature of involved modes Modal interaction

All three modes axisymmetric: k1 = k2 = k3 = 0 Possible
Only one of them is axymmetric Impossible
Only one of them is axymmetric: e.g. k1 = 0, k2 5 0, k3 5 0 Possible if k2 = k3

All three modes asymmetric: k1 5 0, k2 5 0, k3 5 0 Possible if
k1 ¼ k2 þ k3

k2 ¼ k1 þ k3

k3 ¼ k1 þ k2

8<
:

kp is the number of nodal diameters of mode Up, and qp is the time evolution of mode Up in set (18).
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on the numbers of nodal diameters that lead to non-zero resonant terms and thus to a possible energy ex-
change between the involved modes (fourth line). Then, the particular cases of involved axisymmetric
modes and/or asymmetric modes are considered (remaining lines).

These order-two internal resonances are specific to shells with a non-zero curvature, since plates show
only order-three internal resonances. Section 5 of this paper is related to the case of Table 3.

4.3.2. Order-three internal resonances

The coupling rules are summarized in Tables 5–7, in a similar manner as for the previous case of order-
two internal resonances. Some cubic non-linear terms are always resonant, even if no cubic internal reso-
nance (Eq. (23b)) is fulfilled. An example is a term qiq

2
j , which is resonant in the ith oscillator (of natural

frequency xi) for any value of the natural frequency xj of mode Uj, since xi = xi + xj � xj. It can be
proved (Sridhar et al., 1975; Lacarbonara et al., 2003) that those terms do not lead to large energy ex-
changes if they are the only ones present in the equations. Thus, only resonant terms specifically related
to the cubic internal resonances of Eq. (23b) are considered in Tables 5–7.

These order-three internal resonances are common to any shell; in particular, they are the only internal
resonances involved in vibrations of plates (when v = 0). However, they are of significant importance for
shells with small curvature only, since cubic non-linear terms become negligible with respect to quadratic
terms for large curvatures (ec � eq if R is small compared to a, see Table 1). The case of Table 5 has been
recently addressed by Lee et al. (2003) and cases of Tables 6 and 7 extend earlier results of Sridhar et al.,
1978), corrected by Yeo and Lee (2002), in the case of circular plates.
Table 5
Rules determining if modal interaction between modes U1 and U2 is possible, when internal resonance x2 = 3x1 is fulfilled

x2 = 3x1

Modes U1(x1,k1) U2(x2,k2)
Resonant terms q2

1q2 q3
1

Rule for both res. terms: {2k1,0} \ {k1 + k2,jk1 � k2j} 5 ;
Nature of involved modes Modal interaction

Both modes axisymmetric: k1 = k2 = 0 Possible
Only one of them asymmetric Impossible

Both modes asymmetric: k1 5 0, k2 5 0 Possible if
k2 ¼ k1

k2 ¼ 3k1

�

kp is the number of nodal diameters of mode Up, and qp is the time evolution of mode Up in set (18).



Table 7
Rules determining if modal interaction between modes U1, U2, U3 and U4 is possible, when internal resonance x4 = x1 + x2 + x3 is
fulfilled

x4 = x1 + x2 + x3

Modes U1(x1,k1) U2(x2,k2) U3(x3,k3) U4(x4,k4)
Res. terms q2q3q4 q1q3q4 q1q2q4 q1q2q3

Rule for all four res. terms: {k1 + k2,jk1 � k2j} \ {k3 + k4,jk3 � k4j} 5 ;
Nature of involved modes Modal interaction

All three modes axisymmetric: k1 = k2 = k3 = 0 Possible
Only one of them asymmetric Impossible
Only two asym.: e.g. k1 5 0, k2 5 0, k3 = k4 = 0 Possible if k1 = k2

Only one axisym.: kp = 0, kq 5 0 (q5 p) Possible if
k1 ¼ k2 þ k3

k2 ¼ k1 þ k3

k3 ¼ k1 þ k2

8<
:

All asym.: k1 5 0, k2 5 0, k3 5 0, k4 5 0 Possible if

k1 þ k2 ¼ k3 þ k4

k1 þ k3 ¼ k2 þ k4

k1 þ k4 ¼ k2 þ k3

k1 ¼ k2 þ k3 þ k4

k2 ¼ k1 þ k3 þ k4

k3 ¼ k1 þ k2 þ k4

k4 ¼ k1 þ k2 þ k3

8>>>>>>>><
>>>>>>>>:

kp is the number of nodal diameters of mode Up, and qp is the time evolution of mode Up in set (18).

Table 6
Rules determining if modal interaction between modes U1, U2 and U3 is possible, when internal resonance x3 = x1 + 2x2 is fulfilled

x3 = x1 + 2x2

Modes U1 (x1, k1) U2 (x2, k2) U3 (x3, k3)
Res. terms q2

2q3 q1q
2
2

Rule for all three res. terms:
fk1 þ k2; j k1 � k2 jg \ fk2 þ k3; j k2 � k3 jg 6¼ ;
f2k2; 0g \ fk1 þ k3; j k1 � k3 jg 6¼ ;

�

Nature of involved modes Modal interaction

All three modes axisymmetric: k1 = k2 = k3 = 0 Possible
Only mode U1 asymmetric: k1 5 0, k2 = k3 = 0 Impossible
Only mode U2 asymmetric: k2 5 0, k1 = k3 = 0 Possible "k2

Only mode U3 asymmetric: k3 5 0, k1 = k2 = 0 Impossible
Only mode U1 axisymmetric: k1 = 0, k2 5 0, k3 5 0 Possible if k3 = 2k2

Only mode U2 axisymmetric: k2 = 0, k1 5 0, k3 5 0 Possible if k1 = k3

Only mode U3 axisymmetric: k3 = 0, k1 5 0, k2 5 0 Possible if k1 = 2k2

All three modes asymmetric: k1 5 0, k2 5 0, k3 5 0 Possible if

k1 ¼ k3 8k2

k1 þ k3 ¼ 2k2

k1 ¼ 2k2 þ k3

k3 ¼ k2 þ k1

8>><
>>:

kp is the number of nodal diameters of mode Up, and qp is the time evolution of mode Up in set (18).
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4.4. Influence of curvature

Some numerical values of coefficients are now exhibited to evaluate the dependence of coefficients bs
pq

and Cs
pqu on the curvature of the shell. They were computed numerically using Eqs. (20) and (21) with

the analytical expressions of the mode shapes of Appendix A and B.



Table 8
Numerical values of coefficients of quadratic resonant terms in the case of the 1:1:2 internal resonance between two companion
asymmetric mode (k, 0) and the first axisymmetric mode (0,1), as functions of curvature parameter v and for m = 0.33

Mode (k,n) Coef. of res. terms Curvature parameter v

10�9 100 1000 10000

(2,0) a1 = a2 1.9555 1.9562 1.9555 1.9453
a3 = a4 0.9778 0.9782 0.9778 0.9727

(3,0) a1 = a2 5.7070 5.7086 5.7122 5.6783
a3 = a4 2.8535 2.8543 2.8562 2.8393

(4,0) a1 = a2 11.201 11.203 11.212 11.166
a3 = a4 5.6006 5.6016 5.6059 5.5833

(5,0) a1 = a2 18.414 18.416 18.427 18.389
a3 = a4 9.2072 9.2081 9.2137 9.1952

(6,0) a1 = a2 27.333 27.335 27.346 27.328
a3 = a4 13.667 13.668 13.674 13.665

(7,0) a1 = a2 37.952 37.953 37.964 37.967
a3 = a4 18.977 18.977 18.983 18.985

The {ai}i=1. . .4 are defined by Eqs. (25a)–(25c); a1 ¼ �b1
13 � b1

31 ¼ a2 ¼ �b1
23 � b1

32 and a3 ¼ �b3
11 ¼ a4 ¼ �b3

22. Twelve modes � b have
been retained in Eq. (20), in order to obtain a 5-digit precision.
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Table 8 shows several values of quadratic coefficients ai of resonant terms in the case of the 1:1:2 internal
resonance treated in Section 5 (The coefficients are defined by Eqs. (25a)–(25c)). Fig. 9 presents the evolu-
tion of the relative value of coefficients ai, that is the ratio of ai to its value for v = 10�9. One can observe
that these quadratic coefficients depend only slightly on the curvature parameter v. Moreover, the relative
evolution with respect to v of coefficient a1 = a2 is identical to that of a3 = a4, for a given value of the num-
ber k of nodal diameters of the companion modes. This is a consequence of the fact that for a given value of
k, the {ai}i=1, . . . , 4 all depend on the same modal shapes (Uk0 and U01).

Table 9 shows the only cubic coefficient that is involved in a single axisymmetric mode vibration. It does
not depends on v. The same table and Fig. 10 shows coefficient of the 1:1 internal resonance between two
companion purely asymmetric modes with k nodal diameters (and no nodal circles). They depend very
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Fig. 9. Evolution of coefficients of quadratic resonant terms of Table 8 with respect to curvature parameter v, for k 2 {2, . . .7}: (—)
ratio of a1 = a2 to their value for v = 10�9 and (–) ratio of a3 = a4 to their value for v = 10�9.



Table 9
Numerical values of coefficients of cubic resonant term in the case of a single axisymmetric mode (0,n) or in the case of the 1:1 internal
resonance between two companion asymmetric mode (k, 0), with respect to curvature parameter v and for m = 0.33

Mode (k,n) 10�9 Curvature parameter v

100 1000 10,000

(0,1) 8.5287
(0,2) 163.77
(0,3) 1076.6
(2,0) 1.8966 1.8985 1.9053 1.9093
(3,0) 16.984 17.304 17.987 18.121
(4,0) 70.001 70.203 71.724 77.034
(5,0) 202.83 203.32 207.26 226.33
(6,0) 476.77 477.68 485.36 531.57
(7,0) 975.31 976.78 989.45 1078.1

Twelve modes � b have been retained in Eq. (21), in order to obtain a five-digit precision.
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Fig. 10. Evolution of coefficients of cubic resonant terms of Table 9, related to purely asymmetric modes with k nodal diameters, with
respect to curvature parameter v. The ratio between the coefficient to its value for v = 10�9 is plotted, for k 2 {2, . . .7}.
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slightly on the curvature parameter v. The numerical values of this latter case are in agreement with those
computed in Touzé et al. (2002) for a circular plate.

One can conclude that coefficients are almost constant as a function of v. It is a consequence of the fact
that the shell mode shapes slightly depend on curvature, as shown in Section 3.1. Thus, the dependence of
the dynamics of the shell upon its geometry is mainly governed by the value of eq (Eq. (8b)), since ec is a
constant with respect to the curvature (Eq. (8c)).
5. Application: the case of a one-to-one-to-two internal resonance

This section is devoted to the analysis of a system exhibiting a one-to-one-to-two (1:1:2) internal reso-
nance, corresponding to the interaction between two companion asymmetric mode with an axisymmetric
mode, whose natural frequency is nearly equal to twice that of the asymmetric ones. This specific internal
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resonance is studied here because it has been observed on a real shell at the laboratory, with energy transfer
between the first (0,1) axisymmetric mode and the sixth (6,0) asymmetric. Fig. 11 shows the vibration pat-
tern measured with a scanning laser vibrometer, when the structure is excited at its center by means of a
sinusoidal forcing. The vibrations patterns resulting from two excitation conditions—related to two fre-
quencies of excitations close to the natural frequency of the (0,1) mode—are shown on Fig. 11, with
and without coupling with one of the companion asymmetric (6,0) modes. Precise measurements and model
fitting will be reported in a forthcoming paper.

Two-to-one internal resonance occurs in many different physical systems and has been already studied
by a number of investigators (see e.g. Nayfeh and Balachandran, 1989; Nayfeh, 2000, and references there-
in, for a quick survey including references on spring pendulum, ships, surface waves in closed basins, etc.).
For mechanical systems displaying geometrical non-linearities, this specific resonance has been studied both
theoretically and experimentally for a structure composed of two slender beams and two dense masses,
which were adjusted so that the first two natural frequencies were in the ratio 1:2 (Haddow et al., 1984;
Nayfeh and Zavodney, 1988). The two-dof dynamical system has also been studied by Miles (1984),
Yamamoto and Yasuda (1977), and the particular phenomenon of saturation was exhibited. As structures
with curvature display quadratic non-linearity, 1:2 resonance has naturally been studied for the vibrations
of arches and suspended cables (see e.g. Tien et al., 1994; Benedettini et al., 1995).

In the field of circular cylindrical shell vibrations, Nayfeh and Raouf (1987) performed a similar study,
as they investigated the interaction between an axisymmetric mode and the two configurations of an asym-
metric mode. However, they only considered the perfect case of an infinitely long cylinder. In particular
they did not take into account the small detuning that necessary occur between the two preferential con-
figurations in a real system. We will show that these imperfections have a fundamental role for explaining
the experimentally observed coupling. More recently, they proposed a second-order solution (Chin and
Nayfeh, 2001). Robie et al. (1999) also studied the 1:2 internal resonance, but they limited their study to
free undamped vibrations, and considered one asymmetric configuration only. Alhazza (2002) analyzed
the 1:2 resonance for a doubly-curved cross-ply shallow shell. Finally, a 1:1:1:2 resonance in circular cylin-
drical shells has been studied by Amabili et al., but the forcing was considered on one preferential config-
uration, thus naturally leading to coupled solutions with the first and third axisymmetric mode for any
vibration amplitude (Amabili et al., 2000, Pellicano et al., 2000). Moreover, the two configurations were
supposed to have exactly equal eigenfrequencies.

The present developments are aimed at filling the gap between the previous studies and sheding light on
the relevance of the parameters that are specifically connected to the imperfection of the shell. More
specifically, it will be shown that those parameters are crucial for understanding the nature of the coupled
Fig. 11. Vibration pattern with (right) and without (left) coupling between the (0,1) mode and a purely asymmetric (6,0) mode,
measured on a real shell with a scanning laser vibrometer. The geometry of the shell is defined by a = 300mm, R = 1.515m and
h = 1mm.
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regime. It will be demonstrated that the energy transfer is specific to one of the companion asymmetric
modes and that no traveling wave appear as long as the cubic terms are effectively negligible.

The spherical shell is assumed to be excited by an external sinusoidal force located at its center, whose
frequency X is chosen close to the natural frequency (denoted here by x3) of an axisymmetric mode (0,n 0)
of n 0 nodal circles. The curvature parameter v is chosen so that an internal resonance exist between mode
(0,n 0) and two companion asymmetric modes (k,n) of frequencies x1 and x2, so that x3 ’ 2x1 ’ 2x2.
Fig. 3 shows that these internal resonances occur for many values of v. For example, mode (0,1) can be in-
volved in a 1:1:2 internal resonance between any of the asymmetric modes (k, 0) with no nodal circles. In the
following, a reduced order model is deduced from the set (18) and we focus on a first-order perturbative solu-
tion. As a consequence, (i) only the modes involved in internal resonance are retained, (ii) the cubic terms are
neglected with respect to the others, according to the values of the parameters eq and ec (see Table 1) and (iii)
all non-resonant terms are dropped. The transverse displacement w(r,h, t) is then written
wðr; h; tÞ ¼ RknðrÞðq1ðtÞ cos kh þ q2ðtÞ sin khÞ þ R0n0q3ðtÞ; ð24Þ

where q1 and q2 are related to the asymmetric modes and q3 to the axisymmetric. Rkn(r) and R0n0 ðrÞ are de-
fined in Appendix A. The {qi}i=1,. . .,3 are solutions of the following set, deduced from (18):
€q1 þ x2
1q1 ¼ eq½a1q1q3 � 2l1 _q1
; ð25aÞ

€q2 þ x2
2q2 ¼ eq½a2q2q3 � 2l2 _q2
; ð25bÞ

€q3 þ x2
3q3 ¼ eq½a3q2

1 þ a4q2
2 � 2l3 _q3 þ Q cos Xt
: ð25cÞ
The forcing terms of the first two oscillators (25a) and (25b) vanish since the corresponding modes have a
node at the center of the shell. The term proportional to q2

3 in Eq. (25c) is not considered since it is non-
resonant. The reduced-order model defined above is justified because the present study is focused on the
loss of stability of the single degree-of-freedom (sdof) solution (defined by the directly excited axisymmetric
mode only, q1(t) � q2(t) � 0). A first-order perturbative development is then sufficient and the formalism of
non-linear normal modes need not to be used (Nayfeh and Nayfeh, 1994). This would not be the case if one
was interested in predicting the hardening or softening behavior of a single mode. In this situation, it would
be necessary to retain a number of additional oscillators in the model, the cubic terms as well as the non-
resonant terms, as shown for example in the case of circular cylindrical shells by Amabili et al. (1999) or in a
general case by Touzé et al. (2004) with the formalism of non-linear modes.

Coefficients {ai}i=1,. . .,4 can be computed from the bp
qs expressed in Eq. (20). In a perfect case, one obtains

a1 = a2, and a3 = a4, as shown in Table 8. However, for the sake of generality, the {ai}i=1,. . .,4 are kept var-
iable in the following. To express the internal resonance relationships, we introduce two internal detuning
parameters r0 and r1
x2 ¼ x1 þ eqr0; ð26aÞ

x3 ¼ 2x1 þ eqr1: ð26bÞ

One can notice that: x3 = 2x2 + eq(r1 � 2r0). Finally an external detuning parameter r2 is introduced to
express the nearness of the forcing frequency with the axisymmetric natural frequency
X ¼ x3 þ eqr2: ð27Þ
5.1. Multiple scale solution

System (25) is solved by the method of multiple scales. To the first-order, and for j = 1,2,3
qjðtÞ ¼ qj1ðT 0; T 1Þ þ eqqj2ðT 0; T 1Þ þ Oðe2
qÞ; ð28Þ
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where T0 = t and T1 = eqt. The first-order equations lead to express the {qj1}j=1,2,3 as
qj1ðT 0; T 1Þ ¼
1

2
ajðT 1Þ expðihjðT 1ÞÞ expðixjT 0Þ þ c:c:; ð29Þ
where c.c. stands for complex conjugate. Polar form is used to express the amplitude of the first-order solu-
tions, which depends on the slow time scale T1. Introducing (29) into the second-order equations leads to
the so-called solvability condition, which can be written as a six-dimensional dynamical system by separat-
ing real and imaginary parts. Finally, the following variables allows definition of an autonomous dynamical
system:
c1 ¼ r1T 1 þ h3 � 2h1; c2 ¼ ðr1 � 2r0ÞT 1 þ h3 � 2h2; c3 ¼ r2T 1 � h3: ð30Þ
It reads
a0
1 ¼ �l1a1 þ

a1a1a3

4x1

sin c1; ð31aÞ

c01 ¼ r1 �
a3a2

1

4x3a3

cos c1 �
a4a2

2

4x3a3

cos c2 �
Q

2x3a3

cos c3 þ
a1a3

2x1

cos c1; ð31bÞ

a0
2 ¼ �l2a2 þ

a2a2a3

4x2

sin c2; ð31cÞ

c02 ¼ r1 � 2r0 �
a3a2

1

4x3a3

cos c1 �
a4a2

2

4x3a3

cos c2 �
Q

2x3a3

cos c3 þ
a2a3

2x2

cos c2; ð31dÞ

a0
3 ¼ �l3a3 �

a3a2
1

4x3

sin c1 �
a4a2

2

4x3

sin c2 þ
Q

2x3

sin c3; ð31eÞ

c03 ¼ r2 þ
a3a2

1

4x3a3

cos c1 þ
a4a2

2

4x3a3

cos c2 þ
Q

2x3a3

cos c3; ð31fÞ
where (Æ) 0 stands for the derivation with respect to T1.
5.2. Fixed points

Fixed points for Eq. (31) are obtained by cancelling the left-hand side terms, which involve a derivative
with respect to time. There are a priori four kinds of fixed points:

(i) sdof solution. It corresponds to the case where a1 = a2 = 0: no energy transfer between modes occur
and the response of the system is governed by the directly excited axisymmetric mode only. Its amplitude is
given by
a3 ¼
Q

2x3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

2 þ l2
3

p ; ð32Þ
(ii) C1 solution. It corresponds to a coupling between the axisymmetric mode and the first asymmetric
configuration, thus a1 5 0, and a2 = 0.

(iii) C2 solution. The coupling is here with the second asymmetric configuration: a1 = 0, and a2 5 0.
(iv) C3 solution. Coupling with both asymmetric configurations at the same time, leading to a1 5 0 and

a2 5 0. It will be shown next that this solution exists only in the perfect case.
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Analytical expressions for the C1 and C2 solutions are easily available with a little algebra, which is not
reproduced here (see e.g. Nayfeh and Raouf, 1987; Nayfeh and Mook, 1979; Haddow et al., 1984). One
then obtains:

• C1 solution:
a3 ¼
2x1

a1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4l2

1 þ ðr1 þ r2Þ2
q

; ð33aÞ

a1 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�C1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2

4a2
3

� C2
2

svuut
; ð33bÞ

with : C1 ¼
2x1x3

a1a3

ð2l1l3 � r2ðr1 þ r2ÞÞ; ð33cÞ

and : C2 ¼
2x1x3

a1a3

ð2r2l1 þ l3ðr1 þ r2ÞÞ: ð33dÞ
• C2 solution:

2x2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
q

a3 ¼ a2

4l2
2 þ ðr1 � 2r0 þ r2Þ ; ð34aÞ

a2 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�C3 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2

4a2
4

� C2
4

svuut
; ð34bÞ

with : C3 ¼
2x2x3

a2a4

ð2l2l3 � r2ðr1 � 2r0 þ r2ÞÞ; ð34cÞ
and : C4 ¼
2x2x3

a2a4

ð2r2l2 þ l3ðr1 � 2r0 þ r2ÞÞ: ð34dÞ
One can notice that the symmetry of the original equations (25) allows derivation of the expression for the
C2 solution from the expression found for C1. The symmetry of the system is of great help for the under-
standing and analysis of energy transfer, as shown next.

The C3 case is considered by keeping all amplitudes different from zero. However, the operations that
lead to Eqs. (33a) and (34a) are still possible. Thus, in the more general case, when the two asymmetric
configurations are eventually present in the vibration, a3 can take the two different values given by (33a)
and (34a). Moreover it can be shown that if a3 is equal to (33a) (respectively, equal to (34a)), then c2

(respectively, c1) is undefined and a2 = 0 (respectively, a1 = 0) is the only possible case. As a consequence,
no other solutions than the ones already described (sdof, C1 and C2) are available, except when
Eqs. (33a) and (34a) are simultaneously fulfilled, which is true only in the perfect case (defined by:
l1 = l2, a1 = a2, and x1 = x2, which implies r0 = 0). The stability analysis confirms these conclusions,
as well as numerical simulations which were conducted with the software DsTool (Guckenheimer
et al., 1995).
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5.3. Stability analysis

A linear stability analysis is performed by computing the Jacobian matrix J of Eq. (31). We first inves-
tigate the stability of the sdof solution. The eigenvalues are
ksdof
1;2 ¼ �l3 � ir2; ð35aÞ

kC1
1 ¼ �l1 þ

a1a3

4x1

sin c1; ð35bÞ

kC1
2 ¼ � a1a3

2x1

sin c1; ð35cÞ

kC2
1 ¼ �l2 þ

a2a3

4x2

sin c2; ð35dÞ

kC2
2 ¼ � a2a3

2x2

sin c2: ð35eÞ
The superscripts indicate that each pair of eigenvalues can be easily related to: (i) the stability of the sdof
solution with respect to perturbations contained within the subspace a1 = a2 = 0 (sdof case), (ii) its stability
with respect to perturbations caused by the presence of the first asymmetric configuration (C1 case), (iii) its
stability with respect to perturbations caused by the second asymmetric configuration (C2 case). The simple
form of Eq. (35a–e) is a direct consequence of the relative decoupling and symmetry of the initial equations
(25). By forming the products kC1

1 :kC1
2 and kC2

1 :kC2
2 , and eliminating c1 and c2 in favor of the other param-

eters, one can exhibit two stability conditions for the sdof solutions:
a3 6 L1ðr2Þ; where L1ðr2Þ ¼
2x1

a1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4l2

1 þ ðr1 þ r2Þ2
q

; ð36Þ

a3 6 L2ðr2Þ; where L2ðr2Þ ¼
2x2

a2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4l2

2 þ ðr1 � 2r0 þ r2Þ2
q

; ð37Þ
with a3 defined by Eq. (32). These stability conditions have been reported in Fig. 12, where the sdof solu-
tions is unstable in the gray shaded regions.

In the perfect case—i.e., defined by the complete identity of the two configurations (i.e. a1 = a2, x1 = x2

and l1 = l2), the two curves L1(r2) and L2(r2) are merged. Hence both configurations are simultaneously
excited when the sdof curve crosses L1 � L2. It can then be shown that their amplitudes verify the following
relationship:
a2
1 þ a2

2 ¼ �4C1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16C2

1 �
64x2

1x
2
3

a2
1a

2
3

ð4l2
1 þ ðr1 þ r2Þ2Þðl2

3 þ r2
2Þ �

4Q2

a2
3

� �s
ð38Þ
An infinity of coupled solutions are available: any solution that verify Eq. (38). This has been verified
numerically. The reader interested in the perfect case is referred to Nayfeh and Raouf (1987) for a complete
study.

In real situations, it is impossible to ensure perfectness, and slight perturbations are always present that
break the precedent results and keep the curves L1(r2) and L2(r2) distinct, so that the situation depicted in
Fig. 12 is generic. The discussion is restricted to positive values of r0, because the ordering of the config-
urations is made by their natural frequencies.

The stability of the C1 and C2 solutions is now addressed. In Fig. 12, if the sdof solution is followed
from r2 < 0 for increasing values, it first crosses L1 at r2 = �1.5, so that a C1 solution is obtained, whose



Fig. 12. Stability of the sdof solution with respect to the perturbations caused by the first configuration (L1 curve), and by the second
configuration (L2 curve). The figure is made with a1 = 7, a2 = 5, l1 = l3 = 0.1, l2 = 0.2, Q = 16, x1 = 4, x2 = 4.09, x3 = 8.1.
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stability is studied by substituting for Eqs. (33a) and (33b) in the Jacobian matrix J. The eigenvalues are
found to be solutions of
P ðkÞ ¼ detðJ� kIÞ ¼ �l2 þ
a2a3

4x2

sin c2 � k

� �
� a2a3

2x2

sin c2 � k

� �
PC2ðkÞ; ð39Þ
where PC2(k) governs the eigenvalues of the C1 solution with respect to perturbations contained within the
subspace a2 = 0. Hence the perturbations created by the presence of the second configuration are com-
pletely described by the first two eigenvalues, which are exactly equal to that obtained when studying
the sdof solution (see Eqs. (35d) and (35e)). The C1 solution is thus stable as long as a3 6 L2(r2) with a3

given now by Eq. (33a). For the C1 solution, a3 (given by Eq. (33a)) takes exactly the value given by
the stability condition L1 (Eq. (36)), so that it can be read in Fig. 12 that the C1 solution is stable as long
as L1 does not cross L2. In Fig. 12, the crossing occurs at r2 = 0.30, where a stability exchange is observed:
the C1 solution loses its stability in favor of the C2 solution. Thanks to the symmetry of the system, the
discussion is equivalent when following the sdof solution for decreasing values from r2 > 0, by replacing
C1 by C2.

It has been demonstrated that the discussion on the stability can be made by simply following the values
taken by the amplitude a3 of the directly excited axisymmetric mode, and that the coupling occurs either
with the first configuration, or with the second. The imperfections of the system avoid simultaneous energy
transfer to the two configurations. A stability exchange occurs. Hence travelling waves are not possible.

5.4. Generalized stability curves

Fig. 13 displays the different solutions for a typical case. All branches of solutions are obtained analyt-
ically from the results of Sections 5.2 and 5.3 and have been systematically verified by numerical simula-
tions using the software DsTool. When increasing r2, one observes first the sdof solution. At r2 = �1.5,
the first coupling occurs, with the first asymmetric configuration: a1 follows the C1 branch, as well as a3.
At r2 ¼ r̂2 ¼ 0:12, the stability exchange occurs: a1 goes down to zero while a2 grows up to the C2 branch,



Fig. 13. Generalized stability curve for the case: a1 = 7, a2 = 5, a3 = 3, a4 = 4, l1 = l3 = 0.1, l2 = 0.2, Q = 16, x1 = 4, x2 = 4.09,
x3 = 8.1. Stable branches are plotted with solid lines, all other branches are unstable.
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and a3 follows the C2 branch until r2 = 1.36. Hysteretic behaviour is present: when decreasing the excita-
tion frequency, the second configuration is excited first for r2 = 1.14, the stability exchange occurs at the
same value r2 = 0.12, from which the first configuration is excited until r2 = �3.2.

A complete parametric study of all possible cases is difficult to formulate because of the size of the
parameter space. Nonetheless, we will give now briefly a few guidelines of the possible features by changing
two important physical parameters: the internal detuning between the two configurations r0 and the ampli-
tude of the forcing Q.

The stability analysis have proven that a mere glance at the relative position of the two stability curves
L1 and L2 is sufficient to have a comprehensive idea of which coupling will occur. In particular, if e.g. con-
figuration 1 is much more damped than the other, or if the coupling coefficient a1 is small (see Fig. 12), the
stability curve L1 is reached for large Q values only, and thus the main observation is related to a coupling
with the second configuration.

Fig. 14 shows the different behaviour exhibited when increasing the internal detuning r0, when all other
coefficients are related to a perfect case (i.e. a1 = a2, a3 = a4, l1 = l2 = l3). It is assumed in addition that
r1 = 1.

When r0 is small (Fig. 14(a)–(b): r0 = 0.1). The second configuration is mainly observed because the L2

curve is under L1 in a wide instability range: r̂2 6 r2 6 0:26, where r̂2 ¼ L1 \ L2 ¼ �1:17 represents the
intersection point. An opposite result would have been observed by setting r1 = �1. Increasing r0 leads
to move the intersection point r̂2. At r0 = 1.1 (Fig. 14(c)–(d)), the C2 branch becomes very short, and
the coupling mainly occurs with the first configuration. As L2 still crosses the sdof solution around
r2 = 1.1, a short C2 branch is observed. In this specific case, an increasing sweep of the excitation frequency
will then produce successively: the sdof solution (r2 6 �1.17), the C1 solution (�1.17 6 r2 6 0.11), the C2
solution (0.11 6 r2 6 0.31), the sdof solution (0.31 6 r2 6 0.96), the C2 solution (0.96 6 r2 6 1.40) and fi-
nally the sdof solution. For higher values of r0 (Fig. 14(e)–(f): r0 = 1.4), no stable branches corresponding
to C2 are present. Hence the coupling with the second configuration will not occur anymore. However, the
effect of the second configuration is still present, unless the limiting value of the C1 branch defined by
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Fig. 14. Relative positions of the L1 and L2 stability curves (left column), and variation of the branches of solutions (right column), for
increasing values of the internal detuning parameter r0. Other values are fixed at: a1 = a2 = 4, a3 = a4 = 5, li = 0.1, Q = 10, x1 = 4,
r1 = 1.
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rmax
2 ðC1Þ ¼ Qa1

4x1x3

� l3r1

� ��
ð2l3 þ l1Þ ð40Þ
is lower than r̂2. One can see in Fig. 14(f) that the stable portion of the C1 branch is shortened because of
the second configuration. If one increases r0 further, the situation where r̂2 > rmax

2 ðC1Þ happens, the stable
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portion of the C1 branch is not shortened and all happens as if only the first configuration was present in
the dynamics.

The variations of the amplitudes of the solutions can be represented as functions of Q in order to high-
light the phenomenon of saturation of the directly excited mode. Eq. (33a,b) and (34a,b) are then plotted
for a given r2 and a variable Q. The value r̂2 ¼ L1 \ L2 which determines the stability exchange, is indepen-
dent of Q. Thus for a given external detuning, no stability exchange occurs, so that representation of this
curves are the same as the already studied 1:2 resonance (see e.g. Nayfeh and Raouf, 1987; Nayfeh and
Mook, 1979; Haddow et al., 1984).

5.5. Solution for the deflection

In steady state, the deflection of the shell is governed by Eq. (24), with the time functions for the three
modes defined at first-order by
q1ðtÞ ¼ a1 cos
X
2

t � c1 þ c3

2

� �
; ð41aÞ

q2ðtÞ ¼ a2 cos
X
2

t � c2 þ c3

2

� �
; ð41bÞ

q3ðtÞ ¼ a3 cosðXt � c3Þ; ð41cÞ

where ai and ci take the values of a particular stable fixed point. Thus, c3 is the phase difference between
directly excited mode q3 and excitation, and c1 and c2 are the phase differences between modes excited
through internal resonance on the one hand—respectively q1 and q2—and q3 on the other hand.
6. Conclusion

In this paper, a detailed analysis of the non-linear vibrations of thin shallow spherical shells with a free
edge has been proposed. The validity range of the governing equations has been quantified analytically and
by comparison with a numerical solution. Then, a method of resolution via projection onto the linear
modes basis has been detailed, hence presenting the general problem including asymmetric vibrations in
a uniform manner.

The major set of results is the general non-linear modal interaction rules that have been established,
thanks to computation of all coefficients of the non-linear quadratic and cubic terms that appear in the dif-
ferential equations. Those coefficients are of major interest as their values govern the energy exchanges be-
tween mode that are likely to appear at the non-linear stage. It has been shown that an internal resonance
relation between the natural frequencies of the shell is not a sufficient condition for the non-linear modal
interaction to occur, since some coefficients of the non-linear terms vanish. This is a consequence of the
rotational symmetry of the geometry of the structure, and coupling rules that hold on the number of nodal
diameters of the involved modes have been derived. It is thus possible to predict if a particular non-linear
energy exchange between modes is possible by considering only the linear modal analysis of the structure:
the values of the natural frequencies determine the possible internal resonances and the number of nodal
diameters of the involved modes enable to conclude on the activation of the modal interaction. Finally,
an application has been treated: the specific case of a 1:1:2 internal resonance has been revisited, with
emphasis on the effect of the slight imperfections of the structure on the energy transfers.

Beyond the important results derived throughout this study, the developed model framework can now be
used for studying the rich variety of behaviour exhibited by non-linear shell vibrations. As the results of this
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article are based on the rotational symmetry of the structure, similar results can be expected for other
axisymmetric shells (cylindrical, conical or any profile). An experimental validation of the 1:1:2 internal
resonance will be soon reported, showing the validity range and the precision of the model. More generally,
this study can serve as a basis for analytical, or numerical-analytical solutions, computations of non-linear
normal modes for prediction of the trend of non-linearity, or, in a different point of view, for analysis
and synthesis of the sound produced by musical instruments such as cymbals and gongs (Chaigne et al.,
2004).
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Appendix A. Expression of the eigenmodes of the shell

This section is based on the work of Johnson and Reissner (1956), to which the interested reader can
refer for further details.

A.1. General case

The eigenmodes are solutions of the linear, undamped and homogeneous problem related to Eqs. (11a)
and (11b), that is written
DDw þ eqDF þ €w ¼ 0; ðA:1aÞ

DDF ¼ a4

Rh3
Dw: ðA:1bÞ
The solution is separated in space and time by
wðr; h; tÞ ¼ Uðr; hÞqðtÞ and F ðr; h; tÞ ¼ a4

Rh3
Wðr; hÞqðtÞ; ðA:2Þ
where w and F have the same time dependence because F is slaved to w by Eq. (A.1b). Thus, U and W are
solutions of
DDU þ vDW � x2U ¼ 0 and DDW ¼ DU: ðA:3Þ

Eq. (A.3) writes
D½DD þ v � x2
U ¼ 0; ðA:4Þ

where curvature parameter v is defined by Eq. (8a). Two cases must now be considered.

• Case I: modes written in terms of Bessel functions
x2 ¼ v þ f4; D½DD � f4
Uðr; hÞ ¼ 0; ðA:5Þ

Uknðr; hÞ ¼ jkn AkðfknÞrk þ JkðfknrÞ þ CkðfknÞIkðfknrÞ
� �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

RknðrÞ

cos kh

sin kh

"""" ; ðA:6Þ
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Wknðr; hÞ ¼ jkn DkðfknÞrk þ 1 þ f4
kn

v

� �
AkðfknÞ
4ðk þ 1Þ r

kþ2 � 1

f2
kn

J kðfknrÞ � CkðfknÞIkðfknrÞð Þ
" #

cos kh

sin kh

"""" : ðA:7Þ
• Case II: modes written in terms of Kelvin functions
f4 < v; x2 ¼ v � f4; D DD þ f4
� �

Uðr; hÞ ¼ 0; ðA:8Þ

Uknðr; hÞ ¼ jkn½AkðfknÞrk þ berkðfknrÞ þ CkðfknÞbeikðfknrÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
RknðrÞ

cos kh

sin kh

"""" ; ðA:9Þ

Wknðr; hÞ ¼ jkn DkðfknÞrk þ 1 � f4
kn

v

� �
AkðfknÞ
4ðk þ 1Þ r

kþ2 þ 1

f2
kn

beikðfknrÞ � CkðfknÞberkðfknrÞð Þ
" #

cos kh

sin kh

"""" :

ðA:10Þ

In the above equations, Ak, Ck and Dk are constants depending on boundary conditions, jkn is a normal-
ization constant, k is the number of nodal diameters and n the number of nodal circles. Jk denotes the Bessel
function of the first kind of order k and Ik(x) = Jk(ix) with i ¼

ffiffiffiffiffiffiffi
�1

p
. Kelvin functions are defined by berk

(x) + ibeik(x) = Jk(i
3/2x) = (�1)kIk(i

1/2x). The normalization constant jkn is chosen so that Eq. (22) is ful-
filled. Modes Wkn are not normalized (jkn appears in Ukn as well as in Wkn) as they are slaved to transverse
modes Ukn.
A.2. Free-edge boundary conditions

Values of f, Ak, Ck and Dk are determined by introducing the boundary conditions. In the case of a free-
edge, one obtains in a dimensionless form (see Eqs. (5a)–(5d)):
U and W are bounded at r ¼ 0; ðA:11aÞ

U;rr þ mU;r þ mU;hh ¼ 0 at r ¼ 1; ðA:11bÞ

U;rrr þ U;rr � U;r þ ð2 � mÞU;rhh � ð3 � mÞU;hh ¼ 0 at r ¼ 1; ðA:11cÞ

W;r þ W;hh ¼ 0; W;rh � W;h ¼ 0 at r ¼ 1: ðA:11dÞ
The expressions of the modes in terms of Bessel functions or Kelvin functions depends on the values of k,
n and v, results that are summarized in Table A.3.

• Axisymmetric modes and modes with one nodal diameter (k 2 {0,1})
The modes express in terms of Bessel functions, so that fkn ¼ fð0Þkn is the nth zero of the equation
DkðfÞ ¼ 0 ðA:12Þ

with Dk defined in Table A.1. This equation is independent of v—and then of curvature—and is the
equation with whom are calculated the natural frequencies (denoted by xð0Þ

kn ¼ fð0Þ2kn ) of the circular plate
obtained with v = 0. The natural frequencies of the shell are then, from Eq. (A.5), for all k 2 {0,1} and
for all n
xkn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v þ f4

kn

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v þ xð0Þ2

kn

q
: ðA:13Þ



Table A.1
Coefficients for modes in terms of Bessel function

M33 ¼ fðm � 1ÞJ 0
kðfÞ þ ½k2ð1 � mÞ � f2
JkðfÞ,

M34 ¼ fðm � 1ÞI 0kðfÞ þ ½k2ð1 � mÞ þ f2
IkðfÞ,
M43 ¼ f½k2ðm � 1Þ � f2
J 0

kðfÞ þ k2ð1 � mÞJkðfÞ,
M44 ¼ f½k2ðm � 1Þ þ f2
I 0kðfÞ þ k2ð1 � mÞIkðfÞ,
DkðfÞ ¼ M33M43 � M34M44.

~JkðfÞ ¼ kM33 þ M43;~IkðfÞ ¼ kM34 þ M44,

CkðfÞ ¼ � ~Jk ðfÞ
~Ik ðfÞ

,

AkðfÞ ¼ � 2ð1þkÞv
f2ðvþf4Þ CkðfÞðkIkðfÞ � fI 0kðfÞÞ þ ðkJkðfÞ � fJ 0

kðfÞÞ
� �

,

DkðfÞ ¼ 1
2f2 CkðfÞððk þ 2ÞIkðfÞ � fI 0kðfÞÞ þ ððk þ 2ÞJkðfÞ � fJ 0

kðfÞÞ
� �

,
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The mode shapes are obtained by Eqs. (A.6), (A.7) and coefficients of Table A.1. One can show that
A0 = A1 = 0. As a consequence, for all k 2 {0,1}, both transverse and membrane mode shapes do not de-
pend on curvature and transverse modes Ukn are identical to those of the corresponding plate (see e.g.
Touzé et al., 2002). Thus, for all k 2 {0,1} and for all n
Uknðr; hÞ ¼ jkn J kðfknrÞ �
~JkðfknÞ
~IkðfknÞ

IkðfknrÞ
� �

cos kh

sin kh

"""" ðA:14Þ
with ~JkðfÞ and ~IkðfÞ defined in Table A.1.
• Asymmetric modes with k P 2

The particular value of v defined by
vlim
k ¼ ð1 � mÞð3 þ mÞk2ðk2 � 1Þ

1 þ 1
4
ð1 � mÞðk � 2Þ � k2ðk�1Þð1�mÞð4k�mþ9Þ

16ðkþ2Þ2ðkþ3Þ

ðA:15Þ
determines whether the modes writes in terms of Kelvin functions or Bessel functions.
– If v < vlim

k , all modes are written in term of Bessel functions. fkn is the (n + 1)th zero of the equation
f4

v
¼ SkðfÞ

RkðfÞ
� 1 and xkn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v þ f4

kn

q
: ðA:16Þ
In the above equations,
SkðfÞ ¼
k
f
ðm � 1Þðk � 1Þ ~JkðfÞ

k
f
IkðfÞ � I 0kðfÞ

� �
þ ~IkðfÞ

k
f
JkðfÞ � J 0

kðfÞ
� �� �

; ðA:17Þ

RkðfÞ ¼ � 1

2ð1 þ kÞDkðfÞ; ðA:18Þ
with ~JkðfÞ; ~IkðfÞ and DkðfÞ defined in Table A.1. The mode shapes are obtained by Eqs. (A.6) and (A.7)
and coefficients of Table A.1.

– If v > vlim
k , modes with no nodal circles (n = 0) writes in term of Kelvin functions and the others in

terms of Bessel functions. Thus, fk0 is the only zero of equation:
f4

v
¼ 1 � UkðfÞ

TkðfÞ
and xk0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v � f4

k0

q
: ðA:19Þ



Table A.2
Coefficients for modes in terms of Kelvin function

M33 ¼ f2ber00k ðfÞ þ mfber0kðfÞ � k2mberkðfÞ
M34 ¼ f2bei00k ðfÞ þ mfbei0kðfÞ � k2mbeikðfÞ
M43 ¼ f3ber000k ðfÞ þ f2ber00k ðfÞ � f½1 þ k2ð2 � mÞ
ber0kðfÞ þ k2ð3 � mÞberkðfÞ
M44 ¼ f3bei000k ðfÞ þ f2bei00k ðfÞ � f½1 þ k2ð2 � mÞ
bei0kðfÞ þ k2ð3 � mÞbeikðfÞ
DkðfÞ ¼ M33M43 � M34M44

~JkðfÞ ¼ kM33 þ M43;~IkðfÞ ¼ kM34 þ M44

CkðfÞ ¼ � ~Jk ðfÞ
~Ik ðfÞ

,

AkðfÞ ¼ 2ð1þkÞv
f2ðv�f4Þ ½CkðfÞðkberkðfÞ � fber0kðfÞÞ þ ðkbeikðfÞ � fbei0kðfÞÞ


DkðfÞ ¼ � 1
2f2 ½CkðfÞððk þ 2ÞberkðfÞ � fber0kðfÞÞ þ ððk þ 2ÞbeikðfÞ � fbei0kðfÞÞ


Table A.3
Summary of calculation of modes of a spherical shell

k 2 {0,1} "n P 1 ‘‘Bessel’’

xkn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v þ xð0Þ2

kn

q
Eqs. (A.7), (A.12) and (A.14), Table A.1

kP2 n = 0 v < vlim
k v > vlim

k

‘‘Bessel’’ ‘‘Kelvin’’

xk0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v þ f4

k0

q
xk0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v � f4

k0

q
Eqs. (A.6), (A.7) and (A.16) Table A.1 Eqs. (A.9), (A.10), (A.19), Table A.2

k P 2 n P 1 ‘‘Bessel’’

xkn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v þ f4

kn

q
Eqs. (A.6), (A.7) and (A.16), Table A.1

xð0Þ
kn are the frequencies of the corresponding circular plate and vlim

k is defined by Eq. (A.15).
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In the above equation
UkðfÞ ¼ � k
f
ðm � 1Þðk � 1Þ ~JkðfÞ

k
f
berkðfÞ � ber0kðfÞ

� �
þ ~IkðfÞ

k
f
beikðfÞ � bei0kðfÞ

� �� �
ðA:20Þ

TkðfÞ ¼ � 1

2ð1 þ kÞDkðfÞ ðA:21Þ
and ~JkðfÞ, ~IkðfÞ and DkðfÞ are defined in Table A.2. The corresponding mode shapes are obtained by Eq.
(A.9) and (A.10) and coefficients of Table A.2. For modes with at least one nodal circle (n P 1), fkn is the
nth zero of Eq. (A.16), xkn is defined by Eq. (A.16) and the corresponding mode shapes writes with Eqs.
(A.6) and (A.7) and coefficients of Table A.1.
Appendix B. Expression of functions � b

Functions � b(r,h) are solutions of
ðDD � n4Þ� ¼ 0; ðB:1aÞ
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� ¼ 0 at r ¼ 1 ðB:1bÞ

� ;r ¼ 0 at r ¼ 1; ðB:1cÞ

� is bounded in r ¼ 0: ðB:1dÞ

One obtains
� lmðr; hÞ ¼ klm J lðnlmrÞ �
J lðnlmÞ
IlðnlmÞ

IlðnlmrÞ
� �

cos lh

sin lh

"""" ðB:2Þ
where the nlm is the mth solution of the following equation:
J l�1ðnÞIlðnÞ � Il�1ðnÞJ lðnÞ ¼ 0: ðB:3Þ
Computed values of the nlm can be found in Leissa (1993a). The normalization constant klm is chosen so
that Eq. (17) is fulfilled.
Appendix C. Calculation of coupling coefficients bs
pq and � s

pqu

The different modes that are necessary for the calculation of coefficients bs
pq and Cs

pqu (Eqs. (20) and (21))
are noted separated in r and h
U0nðrÞ ¼ R0nðrÞ for k ¼ 0;
Ukn1ðr; hÞ
Ukn2ðr; hÞ

"""" ¼ RknðrÞ
cos kh

sin kh

"""" for k P 1;

W0nðrÞ ¼ S0nðrÞ for k ¼ 0;
Wkn1ðr; hÞ
Wkn2ðr; hÞ

"""" ¼ SknðrÞ
cos kh

sin kh

"""" for k P 1;

� 0mðrÞ ¼ T 0mðrÞ for l ¼ 0;
� lm1ðr; hÞ
� lm2ðr; hÞ

"""" ¼ T lmðrÞ
cos lh

sin lh

"""" for l P 1:
In the following, subscripts c and d will denote the nature in cosine (c = 1) or sine (c = 2) of the consid-
ered mode. In order to lighten notations, subscripts p, q, s and b will sometimes replace triplets (kp,np,cp) to
identify modes U, W and � . For example, Up is the same than Ukpnpcp , so that Upðr; hÞ ¼ RkpnpðrÞ cos kph if
cp = 1 and Upðr; hÞ ¼ RkpnpðrÞ sin kph if cp = 2. In the same manner, RpðrÞ ¼ RkpnpðrÞ.
C.1. Quadratic coefficients bs
pq

Their expression is (Eq. (20)):
bs
pq ¼ �

ZZ
S?

UsLðUp;WqÞdS|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
JWðs;p;qÞ

� 1

2

Xþ1

b¼1

1

n4
b

ZZ
S?

LðUp;UqÞ� b dS|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Iðp;q;bÞ

ZZ
S?

UsD� bdS|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
Kðs;bÞ

: ðC:1Þ
Following the definition of L (Eq. (4)) and integrating over domain S? by separation of variables r and h,
one obtains
Iðp; q; bÞ ¼ I1ðp; q; bÞPð1Þ
cpcqdðkp; kq; lÞ � 2kpkqI2ðp; q; bÞPð2Þ

cpcqdðkp; kq; lÞ; ðC:2Þ
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JWðs; p; qÞ ¼ JW
1 ðs; p; qÞPð1Þ

cscpcq
ðks; kp; kqÞ � 2kpkqJ

W
2 ðs; p; qÞPð3Þ

cscpcq
ðks; kp; kqÞ; ðC:3Þ

Kðs; bÞ ¼ Kðs; bÞPð4Þ
csd
ðs; bÞ; ðC:4Þ
where
I1ðp; q; bÞ ¼
Z 1

0

R00
p R0

q � k2
q

Rq

r

� �
þ R00

q R0
p � k2

p

Rp

r

� �� �
T bdr; ðC:5Þ

I2ðp; q; bÞ ¼
Z 1

0

1

r
R0

p �
Rp

r

� �
R0

q �
Rq

r

� �
T bdr; ðC:6Þ

JW
1 ðs; p; qÞ ¼

Z 1

0

Rs R00
p S0

q � k2
q

Sq

r

� �
þ S 00

q R0
p � k2

p

Rp

r

� �� �
dr; ðC:7Þ

JW
2 ðs; p; qÞ ¼

Z 1

0

Rs
1

r
R0

p �
Rp

r

� �
S0

q �
Sq

r

� �
dr; ðC:8Þ

Kðs; bÞ ¼
Z 1

0

Rs rT 00
b þ T 0

b � l2 T b

r

� �
dr ðC:9Þ
and
Pð1Þ
cc0dðk; k

0; lÞ ¼
Z 2p

0

cos kh cos k0h cos lh

	 	
sin kh sin k0h sin lh

"""""""
"""""""dh;

Pð2Þ
cc0dðk; k

0; lÞ ¼
Z 2p

0

� sin kh � sin k0h cos lh

	 	
cos kh cos k0h sin lh

"""""""
"""""""dh;

Pð3Þ
cc0dðk; k0; lÞ ¼

Z 2p

0

cos kh � sin k0h � sin lh

	 	
sin kh cos k0h cos lh

"""""""
"""""""dh;

Pð4Þ
cd ðk; lÞ ¼

Z 2p

0

cos kh cos lh

	
sin kh sin lh

"""""""
"""""""dh:
The above notations mean that any Pcc0d is obtained by making the product of three functions sine and/or
cosine, each one being taken in a column of the above matrices. (c,c 0,d) refers, respectively, to the first, the
second and the third column and their values determine the line. For example, with (c,c 0,d) = (2,1,2)
Pð3Þ
212ðk; k0; lÞ ¼ �

Z 2p

0

sin kh sin k0h cos lhdh:
Several coefficients P equal zero for specific values of (k,k 0, l) (the numbers of nodal diameters) and (c,c 0,d)
(the nature in sine and/or cosine). This is the cause of the vanishing of some coefficients bs

pq. The results on



Table C.1
Conditions on modes Up, Uq, Us and � b that lead to non-zero Iðp; q; bÞ, Kðs; bÞ and JWðs; p; qÞ
JWðs; p; qÞ 6¼ 0 Iðp; q; bÞ 6¼ 0 Kðs; bÞ 6¼ 0
+ + +
ks 2 {kp + kq,jkp � kqj} l 2 {kp + kq,jkp � kqj} l = ks

Us,cs Up,cp Uq,cq,Wq,cq Up,cp Uq,cq � b,d Us,cs � b,d

cos,1 cos,1 cos,1 cos,1 cos,1 cos,1 cos,1 cos,1
sin,2 sin,2 sin,2 sin,2 sin,2 sin,2

sin,2 cos,1 sin,2 sin,2 cos,1 sin,2
sin,2 cos,1 cos,1 sin,2
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Iðp; q; bÞ, Kðs; bÞ and JWðs; p; qÞ are summarized in Table C.1. To obtain a non-zero bs
pq, one must have

either JWðs; p; qÞ 6¼ 0 or at least one mode � b so that Iðp; q; bÞKðs; bÞ 6¼ 0. It is summarized in Table 2.

C.2. Cubic coefficients Cs
pqu

Their expression is (Eq. (20)):
Table
Condit

Iðp; q
+
l 2 fk

Up,cp

cos,1
sin,2
sin,2
cos,1
Cs
pqu ¼

1

2

Xþ1

b¼1

1

n4
b

Z Z
S

LðUp;UqÞ� bdS|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Iðp;q;bÞ

Z Z
S

UsLðUu; � bÞdS|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
J� ðs;u;bÞ

; ðC:10Þ
where Iðp; q; bÞ has been calculated in the above section and J� ðs; u; bÞ has the same structure than
JWðs; p; qÞ and writes
J� ðs; u; bÞ ¼ J�1 ðs; u; bÞP
ð1Þ
cs;cu;d

ðks; ku; lÞ � 2kulJ
�
2 ðs; u; bÞP

ð3Þ
cs;cu;d

ðks; ku; lÞ; ðC:11Þ
where
J�1 ðs; u; bÞ ¼
Z 1

0

Rs R00
u T 00

b � l2 T b

r

� �
þ T 00

b R0
u � k2

u

Ru

r

� �� �
dr; ðC:12Þ

J�2 ðs; s; bÞ ¼
Z 1

0

Rs
1

r
R0

u �
Ru

r

� �
T 0

b �
T b

r

� �
dr: ðC:13Þ
Again, non-zero Cs
pqu are obtained if Iðp; q; bÞJ� ðs; u; bÞ 6¼ 0, cases specified in Table C.2. The conse-

quences on Cs
pqu are summarized in Table 2.
C.2
ions on modes Up, Uq, Us, Uu and � b that lead to non-zero Iðp; q; bÞ and J!ðs; p; qÞ

; bÞ 6¼ 0

p þ kq; j kp � kq jg

J� ðs; u; bÞ 6¼ 0
+
l 2 fks þ ku; j ks � ku jg

Uq,cq � b,d Us, cs Uu,cu � b,d

cos,1 cos,1 cos,1 cos,1 cos,1
sin,2 sin,2 sin,2
cos,1 sin,2 sin,2 cos,1 sin,2
sin,2 cos,1 sin,2
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Gonçalves, P.B., 1994. Axisymmetric vibrations of imperfect shallow spherical caps under pressure loading. J. Sound Vib. 174 (2), 249–
260.

Grossman, P.L., Koplik, B., Yu, Y.-Y., 1969. Nonlinear vibrations of shallow spherical shells. ASME J. Appl. Mech 39E, 451–458.
Guckenheimer, J., Holmes, P., 1983. Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Springer-Verlag,

New York.
Guckenheimer, J., Myers, M., Wicklin, F., Worfolk, P., 1995. Dstool: a dynamical system toolkit with an interactive graphical

interface. Technical Report, Center for Applied Mathematics, Cornell University.
Haddow, A.G., Barr, A.D.S., Mook, D.T., 1984. Theoretical and experimental study of modal interaction in a two-degree-of-freedom

structure. J. Sound Vib. 97, 451–473.
Hamdouni, A., Millet, O., 2003. Classification of thin shell models deduced from the nonlinear three-dimensional elasticity, part I: the

shallow shells. Arch. Mech. 55 (2), 135–175.
Hui, D., 1983. Large-amplitude vibrations of geometrically imperfect shallow spherical shells with structural damping. AIAA J. 21

(12), 1736–1741.
Johnson, M.W., Reissner, E., 1956. On transverse vibrations of shallow spherical shells. Quart. Appl. Math. 15 (4), 367–380.
Kalnins, A., 1964. Effect of bending on vibrations of spherical shells. J. Acoust. Soc. Am. 36 (1), 74–81.
Koiter, W.T., 1965. On the nonlinear theory of thin elastic shells, part I, II and III. Proc. Kon. Neth. Akad. Wet. B69, 1–54.
Lacarbonara, W., Rega, G., Nayfeh, A.H., 2003. Resonant non-linear normal modes, part I: analytical treatment for structural one-

dimensional systems. Int. J. Non-Linear Mech. 38, 851–872.
Lee, W.K., Yeo, M.H., Samoilenko, S.B., 2003. The effect of the number of nodal diameters on non-linear interactions in two

asymmetric vibration modes of a circular plate. J. Sound. Vib 268 (5), 1013–1023.
Leissa, A.W., 1993a. Vibration of plates. Acoustical Society of America (original issued NASA SP-160, 1969).
Leissa, A.W., 1993b. Vibration of shells. Acoustical Society of America (original issued NASA SP-288, 1973).
Leissa, A.W., Kadi, A.S., 1971. Curvature effects on shallow shell vibrations. J. Sound. Vib. 16 (2), 173–187.
Lobitz, D.W., Nayfeh, A.H., Mook, D.T., 1977. Non-linear analysis of vibrations of irregular plates. J. Sound. Vib. 50 (2), 203–217.
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