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Non-linear dynamic thermomechanical behaviour of 
shape memory alloys

Wael Zaki

Abstract
The non-linear dynamic thermomechanical behaviour of superelastic shape memory alloys is investigated. To this end,
the Zaki–Moumni model, initially developed for quasi-static loading cases, is extended to simulate the uniaxial forced
oscillations of a shape memory alloy device. First, the influence of loading rate is accounted for by considering the ther-
momechanical coupling in the behaviour of NiTi shape memory alloy. Comparisons between simulations and experimen-
tal results show good agreement. Then, the forced response of a shape memory alloy device is investigated at
resonance. Both isothermal and non-isothermal conditions are studied, as well as non-symmetric tensile-compressive
restoring force. In the case of large values of forcing amplitudes, simulation results show that the dynamic response is
prone to jumps, bifurcations and chaotic solutions.

Keywords
dynamic behaviour, hysteresis, shape memory alloy, pseudoelasticity, chaos, symmetry breaking, vibrations, thermome-
chanical coupling, natural frequencies

Introduction

The unusual behaviour of shape memory alloys
(SMAs) is due to their ability to undergo martensitic
transformation (Funakubo, 1987; Patoor and
Berveiller, 1990). Beyond a certain temperature Af ,
mechanical loading may lead to high inelastic deforma-
tion of the material that can be recovered by unloading.
This so-called pseudoelastic behaviour is usually
accompanied by considerable dissipation of energy and
by stiffness variation, which can be used advanta-
geously for vibration damping according to Saadat
et al. (2002). Strain rate effects on the pseudoelastic
characteristics have been the focus of a number of pub-
lished articles from theoretical and experimental points
of view. It is well established that increasing the strain
rate leads to an increase in the slopes of the plateaus of
forward and reverse martensitic transformations and
leads to a change in the area of the hysteresis loop,
which measures the dissipated energy.

Humbeeck and Delaey (1981) appear to be the first 
to underline the exothermic/endothermic characteristic 
of forward/reverse transformations and its influence on 
the hysteresis loop. 

Experiments carried out at different strain rates and 
initial temperatures show an increase in stress 
thresholds with respect to initial temperature and 
strain rate in Mukherjee et al. (1985). A relationship 
between phase transformation stress and temperature 
was given by Leo et al. (1993). It allowed establishing a 
thermomechanical diagram by Leo et al. (1993). The 
dependency of stress thresholds was also highlighted in 
the experimental work by Shaw and Kyriakides (1995). 
However, according to the study done by Lin et al.
(1996), variations in both dissipated energy and phase 
change thresholds occur only above a certain strain 
rate. From those studies emerges the question of distin-
guishing the most prominent effect between tempera-
ture and strain rate. On the one hand, Nemat-Nasser 
and Wei-Guo (2006) showed that pseudoelastic beha-
viour of NiTi SMAs is influenced by temperature varia-
tion induced by increasing the strain rate. On the other 
hand, Helm and Haupt (2002) argue that the depen-
dency of pseudoelastic behaviour on strain rate is due 
to the viscosity of the SMAs.
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This divergence on the origin of strain rate effects
remains in literature until recent works in this area. In
particular, the experimental results shown by Grabe in
Grabe and Bruhns (2008), obtained by finely control-
ling material temperature at different strain rates, allow
to discard the assumption of the viscosity of SMAs.
Morin et al. (2011) developed a model that accounts
for the increase of the slope of transformation plateaus
and the change in the dissipated energy with respect to
strain rate by taking into account the influence of ther-
momechanical coupling. In addition, Chrysochoos
et al. (1996) presented a thermomechanical model, after
investigating temperature measurement using infrared
thermography, which considers only the generated
latent heat as a heating source. Since we are interested
in the dynamic behaviour of SMAs, thermomechanical
coupling must be considered when investigating
dynamic response of a SMA device.

Regarding inertia effect and dynamics of SMAs
structures, Machado et al. (2003) and Savi and
Pacheco (2002) studied the dynamic behaviour of one-
and two-degree-of-freedom SMA oscillators. A consti-
tutive model is derived considering a non-convex poly-
nomial free energy potential for the SMA, which
depends on total strain and temperature as the only
state variables. For lower temperatures, the polynomial
possesses two minima representing stable martensite
states, whereas for higher temperatures, a unique mini-
mum exists corresponding to stable austenite. The
explicit dependence on temperature allows the model to
capture the salient features of the pseudoelastic and
shape memory responses of the SMA in a simple and
straightforward way. However, the model does not
account for intrinsic mechanical dissipation, which con-
tributes to the overall damping capacity of the system.
The same SMA constitutive model is used by Savi et al.
(2002) in order to analyse free and forced vibrations of
a two-bar Von Mises frame structure. Constitutive and
structural non-linearities are shown to have significant
influence on the dynamic response of the frame, which
is found to be highly non-linear with variable number
of equilibrium states depending on temperature.
Lagoudas et al. (2005) investigated a SMA-based pas-
sive damping system consisting of a mass attached to
SMA wires. The experiments were carried out at a
higher temperature where the material response was
pseudoelastic. The authors measured vibration trans-
missibility and found it to decrease with increasing
excitation frequency. The resonant frequency of the
system was also found to decrease because of the soft-
ening behaviour due to the apparent stiffness of the
SMA during phase transformation. Numerical simula-
tions were performed using a constitutive model by
Qidwai and Lagoudas (2000) specialized to the uniaxial
SMA response, where temperature variations measured
in the SMA wires are used as input. Strong thermome-
chanical coupling was considered in a subsequent

article by Machado et al. (2009). Similar analysis was
undertaken by Sitnikova et al. (2010) who considered
an impact oscillator system consisting of an oscillator
and a separate SMA support. When the vibration
amplitude of the oscillator exceeds a certain threshold,
impact against the support leads to energy dissipation
by means of phase transformation in the SMA. Savi
et al. (2008) used a uniaxial version of a constitutive
model in order to simulate the dynamic response of a
simple SMA oscillator. The model features four dissi-
pative state variables that account for phase transfor-
mations between austenite, twinned martensite and
martensite variants detwinned in tension and in com-
pression. The use of different martensite volume frac-
tions for the tensile and compressive martensite
variants allows the model to account for tensile-
compressive asymmetry. The equations of motion are
solved using a Runge–Kutta iterative scheme, and the
dissipative variables are updated using closest-point
projection to enforce consistency with the phase trans-
formation functions. Bernardini and co-workers inves-
tigated thoroughly the non-linear dynamic responses of
a SMA device in a series of articles (Bernardini, 2001;
Bernardini and Pence, 2005; Bernardini and Rega,
2009; Bernardini and Vestroni, 2003; Lacarbonara
et al., 2004). Based on the Ivshin–Pence thermomecha-
nical model and using robust path-following continua-
tion methods, they draw out a complete picture of the
resonant behaviour of the SMA device from small to
medium amplitude range. The isothermal and non-
isothermal conditions were investigated, and numerous
non-linear phenomena (bifurcations, jumps, chaotic
motions) and the complete picture of the influence of
the model parameters were reported. Other works by
Seelecke (2002) investigate free and forced vibrations of
a SMA torsional pendulum, while chaotic responses of
two coupled SMA oscillators were reported in
Machado et al. (2003). Lagoudas et al. also investigated
the thermomechanical dynamic behaviour of a SMA
device in Hartl et al. (2010).

All these investigations and issues show that the
non-linear frequency–response functions (FRFs) of
SMAs exhibit a softening behaviour, as a consequence
of the decrease of effective stiffness at the starting point
of martensitic transformation. Jump phenomenon was
also predicted. On the experimental side, softening
effect was independently reported in many publications
(e.g. Collet et al., 2001; Feng and Li, 1996; Schmidt
and Lammering, 2004). However, jump phenomenon
was almost not observed, being hidden by the increase
of damping capacity. Recently, measurements on a tor-
sional pendulum clearly evidenced the jump (Doaré
et al., 2011; Sbarra et al., 2011).

The main objective of the current contribution is to
extend the model developed by Zaki (2010) and Zaki
andMoumni (2007a) in quasi-static conditions, in order
to study the general dynamic behaviours of structures
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made of SMAs. As already underlined, thermomecha-
nical coupling is a key issue for correctly reproducing
experimental observations. Section ‘Model equations’ is
devoted to an introduction of the thermomechanical
coupling in the Zaki–Moumni (ZM) model. Simulation
of a tensile test on a cylinder shows that the main effects
are well reproduced.

In order to validate the model in dynamic situations,
as a necessary step before using it for full three-
dimensional (3D) simulations of structures made of
SMAs, the 3D model (ZM) is reduced to a single
degree of freedom, allowing for exhaustive compari-
sons with the numerical results given in the articles by
Bernardini (2001), Bernardini and Pence (2005),
Bernardini and Rega (2009), Bernardini and Vestroni
(2003) and Lacarbonara et al. (2004). One main differ-
ence with their work lies in the fact that the thermody-
namic admissibility is ensured in the ZM model thanks
to the framework of generalized standard materials
(GSMs) with internal constraints, developed by
Moumni et al. (2008), used to derive the equations of
the model. The GSM framework ensures the verifica-
tion of the second law of thermodynamics.

Section ‘Reduced model for a uniaxial SMA oscillator’
explains the model reduction to a SMA device.
Numerical results are then compared to those given by
Lacarbonara et al. (2004), showing good agreement. New
results, such as asymmetric restoring force in tensile-
compression loadings, are also studied. All these results
show the useful properties of the non-linear dynamic
behaviour of SMAs in vibration control for instance.

Model equations

ZM 3D thermomechanical model for SMAs

Equations in isothermal conditions. The ZM model for
SMAs is cast within the framework of GSMs with inter-
nal constraints, presented in Moumni et al. (2008). It
was first introduced by Moumni (1995) for pseudoelas-
tic behaviour and later generalized to take into account,
in a unified way, all features associated with SMA
(shape memory effect and reorientation) by Zaki and
Moumni (2007b), cyclic SMA behaviour and training
by Zaki and Moumni (2007a), tension–compression
asymmetry by Zaki (2010) and irrecoverable plastic
deformation of martensite by Zaki et al. (2010). The
original ZM model uses the following expression of the
Helmholtz free energy for the derivation of constitutive
relations

W iso = 1� zð Þ 1

2
eA : S�1

A : eA

� �

+ z
1

2
eM � eorið Þ : S�1

M : eM � eorið Þ+C Tð Þ
� �

+G
z2

2
+

z

2
az+b 1� zð Þ½ � 2

3
eori : eori

� �
ð1Þ

In the above equation, eA and eM are the local strain
tensors of austenite and martensite, respectively; T is
the temperature; z is the volume fraction of martensite
and eori is the orientation strain tensor (note that the
tensors and vectors are written with bold font in equa-
tions). SA and SM are the compliance tensors of auste-
nite and martensite. G, a and b are material parameters
that influence the shape of the superelastic hysteresis
loop and the slopes of the stress–strain curve during
phase change and martensite orientation. C(T ) is an
energy density that depends on temperature as follows

C Tð Þ= j T � T0
� �

+ k ð2Þ

where j and k are material parameters associated with
the density of the generated latent heat.

The state variables obey the following physical
constraints:

� The macroscopic strain tensor e is an average
over the representative elementary volume
(REV) of the strain within the austenite and
martensite phases. By construction, e is given by

1� zð ÞεA + zεM � ε= 0 ð3Þ

� The equivalent orientation strain cannot exceed
a maximum detwinning strain emax

εmax �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
εori : εori

r
� 0 ð4Þ

The above constraints derive from the following
potential

Wl =� l : 1� zð ÞεA + zεM � ε½ �

�m εmax �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
εori : εori

r !
� n1z� n2 1� zð Þ ð5Þ

where the Lagrange multipliers n1, n2 and m are such
that

n1 � 0, n1z= 0 ð6Þ
n2 � 0, n2 1� zð Þ= 0 ð7Þ

and

m � 0, m emax �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
εori : εori

r !
= 0 ð8Þ

The sum of the Helmholtz energy density (equation
(1)) and the potential Wl (equation (5)) gives the
Lagrangian L, which is then used to derive the state
equations. With some algebra, the following stress–
strain relation is obtained

s=S�1 : ε� zεorið Þ ð9Þ
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where S is the equivalent compliance tensor of the
material, given by

S= 1� zð ÞSA + zSM ð10Þ

One can also derive the state equations for two ther-
modynamical forces Az and Aori associated with z and
εori, respectively, and given by

Az =
�∂L
∂z

=
�1

2
S�1

A : s : s +
1

2
S�1

M : s : s +s : eori

� C Tð Þ � Gz� a� bð Þz+ b

2

� �
+

2

3
eori : eori

� �
ð11Þ

and

Aori =
�∂L
∂eori

= zs � z az+ 1� zð Þbð Þeori �
2

3
m

eoriffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3
eori : eori

q
ð12Þ

Then, the thermodynamic forces are taken as subgra-
dients of a pseudopotential of dissipation D defined by

D= a 1� zð Þ+ bz½ � _zj j+ z2Y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
_εori : _εori

r
ð13Þ

where a and b are positive material parameters and Y is
the orientation yield stress in tension. This allows defi-
nition of yield functions for phase change (F 1

z and F 2
z )

and for martensite orientation (F ori). The evolution of
the state variables z and εori is governed by the consis-
tency conditions associated with the yield functions. If
the orientation-finish stress is lower than the critical
stress for forward phase change (i.e. if stress finish srf

of the detwinning process is lower than the stress start
sms of the phase change), the model is such that the
stress-induced martensite is completely oriented as soon
as forward phase change begins.

Thermomechanical coupling. It is worth mentioning that
in the classical model previously presented, the
Helmholtz free energy does not account for the heat
capacity of SMA. The current section aims at including
a constant heat capacity CP, assuming that it is the
same in austenite and martensite phases. Therefore, the
augmented expression of the Helmholtz free energy
reads

W=W iso + rCP T � T 0 � T ln
T

T0

� �� �
ð14Þ

where r is the mass density. Besides, considering a con-
stant heat capacity involves changes only in the state
equation of the entropy. The latter now reads

h= � ∂W
∂T

= � jz+ rCP ln
T

T0

� �

Then, the first law of thermodynamics can be written
in terms of the Helmholtz free energy as

_W+ T _h+h _T =s : _e� div qð Þ+ Sv ð16Þ

where q is the heat influx and Sv is the density of the
internal heat generation.

The second law of thermodynamics gives

D= T _h+ div qð Þ � qrT

T
� Sv � 0 ð17Þ

Using the first and the second laws simultaneously,
one deduces that

D=s : _e� _W+ _Th
� �

� qrT

T
� 0 ð18Þ

where Dth = � qrT=T is the heat dissipation.
Using the differentiated expression ofW and h

_W=
∂W
∂e

: _e+
∂W
∂z

_z+
∂W
∂eori

: _eori +
∂W
∂z

_z+
∂W
∂T

_T

ð19Þ

and

_h=
∂h

∂e
: _e+

∂h

∂z
_z+

∂h

∂eori

: _eori +
∂h

∂z
_z+

∂W
∂T

_T ð20Þ

the dissipation can be given, thanks to h= � ∂W=∂T ,
Az = � ∂W=∂z and Aori = ∂W=∂eori, in terms of the
Helmholtz free energy as

D=Dint � T
∂2W
∂T∂e

: _e� T
∂2W
∂T∂eori

: _eori

� T
∂2W
∂T∂z

_z� T
∂2W
∂T2

_T + div qð Þ � qrT

T
� Sv

ð21Þ

The second right-hand term accounts for thermoe-
lastic effects, the third for the dissipation generated by
the orientation of martensite, the fourth for the latent
heat and the fifth for the heat capacity.

Assuming that the intrinsic dissipation Dint is posi-
tive, one can write

Dint =Az _z+Aori : _eori � 0 ð22Þ

Moreover, using Fourier’s law of heat conduction,
q= � KvrT , where Kv is the thermal conductivity
assumed to be the same in both phases, allows one to
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derive the heat equation after neglecting the thermoe-
lastic effects

rCP
_T �div KvrTð Þ= �T

∂Aori

∂T
: _εori�T

∂Az

∂T
_z+Sv+Dint

ð23Þ

Besides, complete martensite orientation is assumed
at the beginning of forward phase change, leading to
the following expression of the martensite orientation
strain, in the case of proportional loading

eori = emax

s9

sVM

� �
ð24Þ

where emax is the maximum orientation strain, s9 the
deviatoric stress tensor and sVM the Von Mises equiva-
lent stress.

Indeed, while only the phase change phenomenon
involves dissipation, heat generation due to martensite
orientation is null and heat equation reads now

rCP
_T � div KvrTð Þ= � T

∂Az

∂T
_z+Az _z ð25Þ

Natural convection is assumed at the boundary (∂O)
such that

Q∂O = h Tex � Tð Þ ð26Þ

where Tex is the temperature of the surrounding
medium and h is the heat convection coefficient.

Thermomechanical coupling leads to the increase of
the slope of the transformation plateaus in stress–strain
space with respect to strain rate: the completion of the
phase transformation becomes more difficult at high
strain rate (Figure 1), and the material temperature
increases, which influences its mechanical response. It
is well known, in addition, that the area of the

hysteretic loop changes while increasing strain rate
(Grabe and Bruhns, 2008; Hartl et al., 2010; He and
Sun, 2011; Lexcellent and Rejzner, 2000; Morin et al.,
2011).

In order to verify the ability of the model to recover
properly, these two effects, a finite element (FE) model
of a wire of length 10�1 m and a circular cross section
of radius 10�3 m m, have been implemented with a
behaviour law dictated by ZM model. The discretiza-
tion is performed, thanks to 500 cubic elements with 20
nodes (Gauss’s points) where mechanical fields are
evaluated. There are three degrees of freedom by node
and, therefore, 30,000 degrees of freedom in total.

Thus, at any node N1 of the meshing O (Figure 2),
one solves the following set of equations:

Mechanical equilibrium and heat equations

div sð Þ= 0, 8N1 2 O

rCP
_T � div KvrTð Þ= � T

∂Az

∂T
_z+Az _z, 8N1 2 O

ZM model

s=S�1 : ε� zεorið Þ, 8N1 2 O

Az 2 ∂_zD, 8N1 2 O

Mechanical boundary conditions

ux = 0, 8N1 2 ST

umax
x = 16310�3 m 8N1 2 SU

Thermal boundary conditions:

q=Q∂O = h Tex � Tð Þ, N1 2 ∂O

where ST and SU are the boundary areas at x= 0 and
x= 0:15, respectively (see Figure 2). ∂O stands for the
whole boundary area, that is, including ST , SU and the
lateral surface. Fifty loading increments and physical
three time steps (dt = 40, 0.4 and 0.004 s) are used in

Twinned
Martensite

Detwinned
Martensite

σ σ σ σσσ

σ

θ

εε

Loading
αe ∼ 10−8

ε̇

Austenite

Mf Ms AfAs Te

ε εε ε

Figure 1. Stress–temperature diagram showing that any
change in the temperature for different strain rates involves
different mechanical behaviours.

u
x

max

S
T

S
U

Figure 2. Meshed structure O with boundary zones.
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the FE simulations, conducted for increasing strain
rates as follows: 4310�5 s�5, 4310�2 s�2 and
4310�1 s�1.

Table 1 gives the values of material parameters used
for simulations as already identified in Morin et al.
(2011). The selected node for showing simulation results
is located far from the edges of the specimen in order to
avoid boundary effects (according to the Saint-Venant
principle). Using the above expression for eori allows to
avoid the computation of the consistency condition on
the orientation yield function F ori.

The results of the simulation are shown in Figures 3
and 4. Figure 3(a) and (b) shows the simulated

behaviour at a selected node within the post-processing
zone for the three increasing values of the strain rate
and for two heat exchange situations (h = 50 and 800
Wm22 K21). The thermal hardening is well reproduced
by the model for both the values of h. However, smaller
the value of h, greater the effect of thermomechanical
coupling: the slope variation of the martensitic trans-
formation plateaus is increased about seven times
between the responses at _e= 4310�5 s�1 and
_e= 4310�2 s�1 for h = 50 Wm22 K21 (Figure 3(b)).
Physically, this effect is explained by the increase of the
temperature with increasing strain rate, hence making
the nucleation and growth of martensite more difficult.
The size of the hysteresis loop is also shown to decrease
in the FE simulation, which recovers the main observed
features brought by the thermomechanical coupling
with a fair qualitative accuracy.

Figure 4(a) and (b) shows the corresponding tem-
perature variations during the simulated experiment,
for two different strain rates: 4310�2s�1 and
4310�5 s�1. The temperature variations are governed
by the competition between mechanical dissipation
and latent heat. One can observe that in zone I in
Figure 4(a) and (b), the temperature remains constant
because of the absence of thermoelastic coupling in the
current numerical investigation. However, along zone
II, the beginning of the exothermic phase transforma-
tion generates the temperature variations. Zone III cor-
responds to stabilization of the temperature between
forward transformation finishing point and the reverse
transformation starting one. The endothermic charac-
teristic of the reverse transformation involves a decrease
in the temperature evolution as evidenced in zone IV,
where the reverse phase change begins. Finally, zone V
shows no temperature evolution because of the

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
0

200

400

600

800

(a)
ε

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
0

1

2

3

4

5

6

7

8

9 x 108

σ (Pa)
σ (Pa)

(b)
ε

Figure 3. Influence of the strain rate on the stress–strain response: stress–strain curves at different strain rates _e= 4310�5 s�1

(solid line), _e= 4310�2 s�1 (square) and _e= 4310�1 s�1 (dashed line): (a) for h = 800 and (b) for h = 50.

Table 1. ZM parameters corresponding to the identified
parameters in Morin et al. (2011).

Symbol Value

EA 6153108 Pa
EM 2:43109 Pa
m 0:3
a 2753107 Pa
Y 113107 Pa
j 0:29143106 Pa=8C
emax 4:0%
Cp 440 J kg�1 K�1

r 6500 kg m�3

b 6.90913106 Pa
G 4:65563106 Pa
b 553108 Pa
Af 408C
k 6:89203106 Pa
kv 18 W m�1 K�1

a 6:89203106 Pa
hwater 800 W m�2 K�1

hair 50 W m�2 K�1

ZM: Zaki–Moumni.
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vanishing of all heat sources in the current problem.
However, one can observe that at the end, the tempera-
ture can reach a value below the initial temperature
due to the competition between the latent heat and the
heating exchange rate.

A quantitative comparison is now drawn out by
using the data of the experiments shown in Shaw and
Kyriakides (1995), at two different strain rates and
where the external environment is air. Figure 5(a)
and (b) shows the stress–strain responses at 431025s21

and 4310�2 s�1 for simulation and experiment. One
can highlight that the material parameters used are the
same for both figures; hence, only the strain rate effect
is under consideration currently. The comparison,
although with little mismatches, reveals the ability of
our model to reproduce both the quasi-static behaviour
and thermomechanical coupling effects.

Since the 3D thermomechanical behaviour is vali-
dated on a simple quasi-static simulation, the remain-
der of the article is devoted to extending the model to
handle the case of vibrations. For the purpose of vali-
dation, the 3D model will first be reduced to a single
degree of freedom oscillator displaying pseudoelasticity
(SMA device) in order to compare numerical results
with the literature.

Reduced model for a uniaxial SMA
oscillator

The 3D model presented above is now particularized to
model a non-linear spring included in an oscillator. A
schematic view of the system under consideration is
given in Figure 6. More precisely, our goal is to derive

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
0

1

2

3

4

5

6 x 108
σ (Pa)

(a)
ε

0 0.02 0.04 0.06 0.08
0

1

2

3

4

5

6

7

8

9
x 10

8
σ (Pa)

(b)
ε

Figure 5. Stress–strain responses with ZM model (solid line) and Shaw and Kyriakides’s experiment (dotted line) at (a)
_e= 4310�5 s�1 and (b) _e= 4310�2 s�1.
ZM: Zaki–Moumni.
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Figure 4. Temperature variation with time: (a) at _e= 4310�2 s�1 and (b) at _e= _e= 4310�5 s�1.
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a non-linear spring law reproducing the SMA beha-
viour, so as to include it in a zero-dimensional oscilla-
tor equation. To that end, a 1D bar of cross-section S

and length l, clamped at x= 0 and attached to the mass
M at x= l, is considered, only for derivation of the
non-linear spring behaviour law. One has to keep in
mind that although the bar is 1D, eventually the oscil-
lator model is zero-dimensional. This remark will guide
the retained choice for the spatial dependence of the
temperature one has to account for when reducing the
model. A damper C is mounted in parallel to model
other sources of dissipation. An external force F =Fex

is exerted on x= l. Under the assumption that l � D,
D being a typical length characterizing the cross sec-
tion, the stress in the SMA bar can be considered to be
1D, s =sex � ex, with

s =
F

S
ð27Þ

One defines the total strain in the x-direction as

e=
X

l
ð28Þ

where X is the displacement of the system at x= l.
Besides, the 1D detwinning strain reads

eori, xx =
Xori

l

where Xori is an internal displacement due the martensi-
tic detwinning process.

Equation (9) gives in 1D version

s =Eeq zð Þ e� zeorið Þ ð30Þ

where Eeq(z) is the equivalent Young’s modulus, given
by

Eeq = 1� zð ÞEA + zEM ð31Þ

Using equation (27), equation (28) and

eori =
Xori

l
ð32Þ

one can derive the relationship between the force
exerted on the cylinder and its elongation as

F =K zð Þ X � zXorið Þ ð33Þ

K(z) is a non-linear stiffness depending on the
amount of martensitic phase z. Its expression in the sin-
gle-degree-of-freedom case is analogous to equation
(10) for the 3D case and reads

K zð Þ= 1� z

Ka

+
z

Km

� ��1

ð34Þ

where Ka =EaS=l and Km =EmS=l are the stiffnesses
of the austenitic and martensitic phases, respectively. In
the context of 1D deformations, the thermodynamic
force Az now reads

Az =
F

S

� �2
1

2Em

� 1

2Ea

� �
+

FXori

Sl
� C Tð Þ

�Gz� a� bð Þz+ b

2

� �
Xori

l

� �2
ð35Þ

In this simplified approach, the detwinning criterion
is disregarded, and the displacement Xori has the follow-
ing form

Xori =Xmax sgn Fð Þ ð36Þ

where sgn(F) denotes the sign of F. This assumption
implies that the detwinning process is fully achieved at
any time during the transformation. Actually, the initial
temperature is such that the detwinning finish force is
smaller than the starting force of phase change: accord-
ing to the phase diagram in Figure 1, the level of the
detwinning process becomes maximum at such a tem-
perature. Criteria functions have the following form in
the 1D model

F cri
1, 2 =6Az � a 1� zð Þ � bz ð37Þ

where plus and minus signs apply to F cri
1 and F cri

2 ,
respectively. The evolution of z is then governed by
consistency conditions. The dynamic equation of the
non-linear mass–spring oscillator on which a harmonic
forcing amplitude Emax and frequency v is exerted has
the following expression

M€X + C _X +K zð Þ X � z � Xorið Þ=Emax cos vtð Þ ð38Þ

whereM and C are the mass and damping coefficients,
respectively. Temperature evolution is now addressed
considering that a spatially homogeneous heat flow
exists between the SMA device and the outer domain
at temperature Tex. Consequently, in the 1D equivalent
form of equation (25), the term involving the diver-
gence of the temperature cancels, and the temperature
in the material is characterized by its time evolution
only. This choice of modelization is motivated by the
fact that the final oscillator model is zero-dimensional;
thus, spatial dependence of temperature is disregarded.

Heat exchanges 

M

C

K(z )

H

Emax cos(ωt )

Figure 6. Schematic view of a SMA mass–spring oscillator with
an external forcing.
SMA: shape memory alloy.

7



The heat exchange is modelled by a natural convection
with a heat exchange coefficient H , so that the tempera-
ture of the SMA device is now governed by the follow-
ing equation

rCP
_T � Az _z� jT _z=H Tex � Tð Þ ð39Þ

In this last equation, the intrinsic dissipation has a
simpler form than in the general 3D case because the
detwinning process is expected to be fully achieved
every time and _X

		 		
ori

= 0.
The following non-dimensional parameters are now

introduced

O=
v

vn

, t =vnt ð40Þ

x=
X

Xms

, g =
Emax

Fms

ð41Þ

u=
T

Tref

, uex =
Tex

Tref

ð42Þ

h=
H

rCPvn

, z =
C

2vnM
ð43Þ

In these expressions, vn ¼D
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ka=M

p
is the natural

frequency of the oscillator in the austenitic phase, Fms

is the force at the beginning of the martensitic phase
transformation and Tref is a reference temperature, in
the austenitic phase. Finally, it is assumed that
Ka =Km for simplicity. Finally, the dynamics of the
reduced model for the SMA oscillator is governed by
the following system

€x+ 2z _x+ f x, z, xorið Þ)= g cos Ot

where f x, z, xorið Þ= x� zxori

and xori = xmax sgn fð Þ ð44aÞ

F crit
1 <0, _z � _F crit

1 = 0 ð44bÞ

F crit
2 <0, _z � _F crit

2 = 0 whereF crit
1

=Az � a 1� zð Þ � bz and F crit
2

= �Az � a 1� zð Þ � bz

ð44cÞ

_u� j

rCP

� �
u_z� Az

rTref CP

� �
_z= h uex � uð Þ ð44dÞ

Parameters identification

The reference article we consider for comparison with
our results is that of Lacarbonara et al. (2004) where a
thermomechanical SMA model is also used. In the non-
dimensional version of this model, only four material
parameters are considered and denoted by q1, q2, q3

and J . Their dependency with respect to the parameters
in this article is

q1 =
smf

sms

, q2 =
saf

sas

, q3 =
sas

sms

, J = 1�Mms

Tref

ð45Þ

where sms, smf , sas, saf , Mms, Mmf , Aas and Aaf are
stress and temperature thresholds. Subscripts ms and
mf and as and af refer to forward and reverse transfor-
mations, respectively. Our model needs dimensional
parameters. Some of them can be chosen arbitrarily,
the other ones being calculated from the values of q1,
q2, q3 and J . The radius of the cylinder under test is
chosen equal to 1 mm, so that S = 3:14310�6 m2; its
length (l) is chosen equal to 0.1 m and the reference
temperature (Tref) is chosen equal to 296 K. Some mate-
rial properties are also fixed to realistic quantities of
real materials, sms = 83108 Pa, ssori = 83107 Pa (det-
winning stress start) and sfori = 1653106 Pa (detwin-
ning stress finish). Young’s modulus and maximum
detwinning strain are set to Ea =Em = 53109 Pa and
emax = 0:112. Once these quantities are known, all other
parameters of the model may be calculated using the
following relationships

Xms =
smsl

Ea
, Mms = 1� Jð ÞTref , Mmf = 1� Jq1ð ÞTref

ð46Þ
Ams = 1� Jq3ð ÞTref , Amf = 1� Jq3 � q2ð ÞTref ð47Þ

a=
1

2

1

Em

� 1

Ea

� �
s2

ms � s2
af

2
+ emax sms � saf

� �" #

ð48Þ

b=
1

2

1

Em

� 1

Ea

� �
s2

mf � s2
as

2
+ emax smf � sas

� �" #

ð49Þ

b=
sfori

emax

, a=b� ssori

sfori

eori ð50Þ

G=
1

2

1

Em

� 1

Ea

� �
s2

mf � s2
af � s2

ms +s2
as

2

"

+ smf +sas � sms � saf

� �
emax � a� bð Þe2

max

�
ð51Þ

xmax =
emaxl

Xms

, T0 = Tref , k= a� be2
max

2
ð52Þ

C T0ð Þ=
1

Em

� 1

Ea

� �
s2

ms +s2
af

2
+ emax sms +saf

� �
)

�bemax, j =
C u0ð Þ � k

T0 � Amf

ð53Þ

Comparison is made, for isothermal oscillations,
with two cases of Lacarbonara et al.’s parameter val-
ues. Next section will provide the numerical method
used for the time integration of equations.
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Numerical scheme

Time integration is numerically achieved using a non-
linear implicit Newmark scheme adapted to the treat-
ment of the criteria functions for the evolution of the
volumic fraction z. The main idea is to use a classical
Newmark scheme for the mechanical part of the dynamic
system. Inside the Newton–Raphson loops, iterations are
performed on the two unknowns z and u, so as to achieve
convergence of metallurgic and temperature variables.
The main steps are here briefly explained with emphasis
on the peculiar treatments needed by the present model.
The reader is referred to Géradin and Rixen (1994) and
Hughes (2000) for more details on the Newmark scheme.
Let us assume that at time tn, the state variables (xn, _xn,
€xn, zn, xori, n and un) are known. The first step is to predict
the displacement, velocity and accelerations at time
tn+ 1 = tn +Dt with the classical formula

x	n+ 1 = xn + _xnDt +
Dt2

2
1� 2bNð Þ€xn ð54aÞ

_x	n+ 1 = _xn + 1� gNð ÞDt€xn ð54bÞ
€x	n+ 1 = 0 ð54cÞ

with (gN ,bN ) the classical parameters of the Newmark
family. The three remaining variables are kept constant
so that z	n+ 1 = zn, x	ori, n+ 1 = xori, n and u	n+ 1 = un. The
residue Rn+ 1 is introduced

Rn+ 1 =€xn+ 1 + 2z _xn+ 1

+ xn+ 1 � zn+ 1 � xori, n+ 1ð Þ � g cos Otn+ 1

ð55Þ

Table 2 gives an overview of the main steps of the
numerical integration. In the numerical steps, we focus
on the case of forward transformation for the sake of
simplicity. In addition, to ensure Kuhn–Tucker condi-
tions at the discrete level, simultaneous test of the posi-
tivity of F cri

1 at time n: F cri, n
1 .0 and of _F cri

1 via
F cri, n+ 1

1 .F cri, n
1 is computed. Enforcing 1� z	n+ 1.0,

an update of z	n+ 1 is obtained by expanding the criteria
function at time tn+ 1 at first order
F cri, n+ 1

1 =F cri, n
1 + ∂F cri

1 =∂z
� �

n
� dzn+ 1.

As cancellation of F cri, n+ 1
1 is searched, one gets the

increment dzn+ 1 for correcting the first prediction. In
the case of the reverse transformation, one has to sub-
stitute F cri

2 for F cri
1 and to enforce z	n+ 1.0 in the previ-

ous reasoning. In the numerical calculations, the
Newmark parameters have been set to their classical
values gN = 1=2 and bN = 1=4, while a tolerance eeq of
10210 has been used. Results are shown in the next sec-
tion for isothermal and non-isothermal oscillations.

Isothermal oscillations

Case 1. In this section, the numerical results provided
by our model are compared to those presented by

Lacarbonara et al. (2004). In this first case, the follow-
ing values are considered for the material parameters:
q1 = 1:3, q2 = 0:667, q3 = 0:9 and J = 0:315.
Following the identification procedure explained
before, the ZM parameters are deduced and given in
Table 3. Comparison of results are reported on FRFs,
in order to get the most complete picture of the
dynamics, in the vicinity of the normalized eigenfre-
quency. A simple and direct method for obtaining
FRFs is used: for each value of the forcing frequency
O 2 ½0, 2�, a time simulation is performed. Neglecting
the transient phase, the maximum amplitude of abso-
lute value of the displacement jxjmax is recorded. For
the simulations, the time awaited for the transient to
die away has been set to 80 periods of the forcing, while

Table 2. Numerical scheme for time integration.

1. The convergence criterion is set to Rn+ 1j j<eeq Rnj j
2. Updating of mechanical variables is performed after

determining the displacement increment
( ∂R

∂dx

� �
n
dxn+ 1 = �Rn, where ∂R

∂dx

� �
n
= 1+ 1

bDt2 + 2z g
bDt

),

using Géradin and Rixen (1994)
3. Computation and test of criteria functions corresponding to

equation (37)
4. Computation of the increment dzn+ 1

5. Updating value of zn+ 1 = z	n+ 1 + dzn+ 1

6. Computation of the thermodynamic force Az, n+ 1

7. Temperature can be predicted from the heat equation
discretized by an Euler implicit scheme:

un+ 1 =
u	n+ 1 + huexdt +

Az, n+ 1
rTref CP


 �
zn+ 1�znð Þ

1+ hdt� j
rCp


 �
zn+ 1�znð Þ

8. Computation of the latent heat density C un+ 1ð Þ and criteria
functions F cri, n+ 1

1, 2
9. Repeat the process until mechanical equilibrium and criteria

are fulfilled

Table 3. ZM parameters for case 1, corresponding to the
following parameters in Lacarbonara et al. (2004): q1 = 1:3,
q3 = 0:9, q2 = 0:667 and J = 0:315.

Symbol Value

a 17:9203106 Pa
b 17:9203106 Pa
b 1:47323109 Pa
a 1:47323109 Pa
G 26:883106 Pa
Y 1643106 Pa
k 8:683106 Pa
j 0:531143106 Pa= 8C
emax 0.112
Af 38.5945 K
Ea 531010 Pa
Em 531010 Pa
u0 233.3498 K

ZM: Zaki–Moumni.
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the settle time used to pick out the maximum amplitude
is 120 periods. Time integration is performed with the
adapted Newmark scheme described in section
‘Numerical scheme’, where the time step is selected as
dt = 2p=1000O, corresponding to 1000 points per peri-
ods. In order to get the complete branches of solutions
in the non-linear range, the procedure is repeated for
increasing and decreasing frequencies. For each forcing
frequency O, the initial condition selected for the time
simulation is taken as the end point of the previous
run, in order to minimize the transient time. Figure 7(a)
shows the FRFs obtained for four increasing values of
the forcing amplitude: g = 0.1, 0.2, 0.5 and 0.8. For
g = 0.1, the amplitude of the response never exceeds 1,
so that no phase transformation occurs: a linear
response is observed. For g = 0.2, non-linear response
of the material is excited. As the effective stiffness of
the material severely decreases when martensitic trans-
formation begins, a softening behaviour is observed
with appearance of jump phenomena, which are
enhanced for g = 0.5. In that case, a first jump is
observed at point A when increasing excitation fre-
quency from 0 and the amplitude of the response sud-
denly increases as the response jumps to the higher
branch. On the other hand, when decreasing the excita-
tion frequency and following the higher branch, a jump
is observed at point B where the response suddenly goes
to very small values. For g = 0.8, levels of response
amplitudes are attained such that the martensitic trans-
formation is completed. This results in the appearance
of a third branch of solutions. When increasing O from
0, a first jump is observed at point C where the solution
goes to the third branch, which is left at point D where
a second jump occurs. Decreasing O from 2, jumps are
now observed at points E and F. The FRFs obtained

with our model are completely in the line of previous
results reported elsewhere, where the softening-type
behaviour and the appearance of the third branch with
a hardening-type non-linearity have already been
observed by Lacarbonara et al. (2004). A quantitative
comparison with their results is shown in Figure 7(b),
for g = 0.5 and 0.8. They used a refined continuation
method so that stable and unstable responses are
obtained. This is in contrast with our result where the
direct integration only leads to the stable solutions. The
quantitative comparison for g = 0.5 shows a very good
agreement, the only noticeable difference being the
saddle-node bifurcation at point A occurring later in
our model, for O = 0.7 instead of 0.6 in their work.
The second noticeable difference is the maximum
amplitude of the main branch, near point B, which is a
little bit less in our model. However, all the other fea-
tures are qualitatively and quantitatively found. The
same comparison gives satisfactory results for g = 0.8,
where the saddle-node bifurcation points and the
amplitudes of the solution responses are the same.
However, a main difference is found in the low-
frequency range, where the model of Lacarbonara et al.
predicts occurrence of 1/3 and 1/5 superharmonic reso-
nance whereas our model do not. In our simulations,
the amplitude of the response never exceeds 1 for O
from 0 to point C, hence no phase transformation
occurs and no superharmonic resonance can be excited.

The response is further investigated by increasing the
amplitude of the forcing to g = 1:2. Figure 8(a) shows
that the hardening-type behaviour now dominates the
response. Superharmonic responses are also now
excited in the low-frequency range, resulting in a disor-
dered cloud of points. To get insight into the response
in that frequency range, Poincaré section (stroboscopy
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Figure 7. (a) Maximum amplitude of displacement jxjmax of the device for varying excitation frequencies O and for four amplitudes
of forcing: g = 0.1, 0.2, 0.5 and 0.8. (b) Comparison of the results provided by our model (solid line) and those by Lacarbonara et al.
(circles), for g = 0:8 and g = 0:5 (inset).
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at the forcing frequency) is computed to distinguish per-
iodic from chaotic response, the result is shown in
Figure 8(b). The term ‘chaos’ is used here in its classical
definition from dynamical systems theory that can be
found from many textbooks (e.g. Guckenheimer and
Holmes, 1983; Manneville, 1990; Schuster and Just,
2005), that is, a non-periodic permanent state, charac-
terized by a strange attractor displaying fractal dimen-
sion and (at least) one positive Lyapunov exponent.
Increasing the excitation frequency from 0, one can
observe clearly the successive appearance of 1/9 and 1/7
superharmonic resonance. Below O= 0:2, periodic
response persists, as indicated by the single point given
by the Poincaré section. In the region where 1/5 and 1/3
superharmonic resonance should be excited, a chaotic
region is found. At the limiting values of the chaotic
region, pitchfork symmetry-breaking bifurcations are
observed and followed by period-doubling scenario.
The symmetry-breaking bifurcation gives rise to unsym-
metrical responses with appearance of even harmonics
in the response, whereas the internal force is symmetric.
This feature has been first observed in the Duffing oscil-
lator by Parlitz and Lauterborn (1985) and is also
reported in the work by Lacarbonara et al. (2004) but
for other parameter values, as they did not test such
high values of forcing amplitude. The chaotic response
is illustrated in Figure 9 for O= 0:23 and g = 1:2. The
chaotic behaviour is here assessed by the continuous
component in the Fourier spectrum (Figure 7(b)) as
well as in the self-similar (fractal) appearance of the
phase portrait (Figure 7(c)). The period-doubling route
observed in Figure 9(b) is also a clear indicator stating
the presence of chaotic oscillators at the end of the
Feigenbaum scenario (Guckenheimer and Holmes,
1983; Schuster and Just, 2005). Note that a complete
characterization of the chaotic nature of the dynamics,
which would be ascertained by the presence of (at least)

one positive Lyapunov exponent, was not the primary
goal of that article. The interested reader can find such
developments in Machado et al. (2009) as well as in
Lacarbonara et al. (2004) and Sitnikova et al. (2008,
2010). The symmetry-breaking bifurcation is clearly evi-
denced by the appearance of even harmonics in the
response, as shown in Figure 9(b). The chaotic motion
is characterized by a chaotic amplitude modulation,
whereas a strong persistency of the excitation frequency
is observed. The phase portrait underlines the fractal
nature of the attractor as well as its asymmetry between
positive and negative values of the displacements,
resulting from the symmetry-breaking bifurcation.
Finally in the restoring force, one can observe an accu-
mulation of straight lines near xMf , highlighting the fact
that chaotic responses are observed for oscillation
amplitudes in the vicinity of the completed martensitic
phase.

Case 2. In this section, our model is further confronted
to the results presented in Lacarbonara et al. (2004),
where an hysteresis loop having nearly flat pseudoelas-
tic plateaus and a larger area is considered by setting,
for their model: q1 = 1:05, q3 = 0:3, q2 = 0:833 and
J = 0:315. The corresponding ZM parameters are then
fixed to the values given in Table 4. Figure 10 shows
the frequency–response obtained in that case, for four
increasing values of the forcing amplitude, g = 0.1,
0.2, 0.5 and 0.8. Results have been quantitatively com-
pared to theirs and show once again very good agree-
ment. In comparison to case 1, all the essential features
are found back. The larger area of the hysteresis loop
in case 2 with comparison to case 1 induces that more
dissipation is at work in the non-linear responses so
that the peak amplitudes for each value of g is smaller
than those found in case 1. Once again, no
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superharmonic responses are found below the normal-
ized eigenfrequency for g = 0.8, which is also the result
shown in Lacarbonara et al. (2004). The appearance of
a third branch corresponding to completed martensitic
transformation is also depicted as in case 1.
Interestingly, this branch splits into two parts, which is
in line with the results they presented where chaotic
response were exhibited on the low-frequency part of
this third, upper branch. A Poincaré section is realized
for the corresponding frequency and amplitude range
and is shown in the inset of Figure 10, clearly eviden-
cing the fact that chaotic responses are also predicted
by our model. The chaotic response is shown in Figure

11 for O= 0:22. Once again, the chaotic character of
the response is completely enclosed in the temporal var-
iations of the envelope, see Figure 11(a). The time
series of the volumic fraction as well as the behaviour
of the internal force, shown in Figure 11(d) and (e),
respectively, highlights the fact that during the oscilla-
tions, the system either fully reached the completed
transformation, so that z saturates to 1, or missed the
complete transformation so that z starts to decrease
just before reaching 1. These results show that chaotic
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0.8. Inset: Poincaré section for O 2 ½0:18, 0:26� and g = 0:8,
corresponding to the solutions found on the upper (third)
branch.
adim: adimensional.

Table 4. ZM parameters for case 2, corresponding to the
following parameters in Lacarbonara et al., (2004): q1 = 1:05,
q3 = 0:3, q2 = 0:833 and J = 0:315.

Symbol Value

a 33:603106 Pa
b 33:603106 Pa
b 0:714293109 Pa
a 0:714293109 Pa
Af 306:7763 K K
Y 163107 Pa
k 29:1203106 Pa
u0 264:8183 K
G 4:48003106 Pa

ZM: Zaki–Moumni.

emax , Ea and Em have not been reported in the table as they do not

change with respect to case 1.
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responses are generally observed at the limit point
where martensitic transformation is completed. Phase
portrait and Fourier transformation can be compared
to the ones in Lacarbonara et al., showing an impres-
sive agreement between the predictions given by the
two models.

Asymmetric restoring force. In this paragraph, the
dynamic analysis is carried out in the case of asym-
metric constitutive law. Indeed, according to experi-
ments, SMAs clearly exhibit an asymmetric behaviour
in tension and in compression (Lexcellent and Rejzner,
2000; Orgéas and Favier, 1998). The ZM model can
take this asymmetry into account by introducing the
third invariant in the expression of the equivalent det-
winning strain (Morin et al., 2011; Zaki, 2010). This
asymmetric 3D behaviour law can be reduced to a 1D
law following the procedure explained in section
‘Reduced model for a uniaxial SMA oscillator’. After
reduction, the parameters defining the asymmetric
behaviour are now given by two values for emax, one for
tensile loading et

max and one for compression ec
max. In

this section, the model parameters of case 1 have been
selected, except the values of emax that have been set to
et

max = 0:112 and ec
max = 0:064, respectively. As com-

pared to the symmetric case studied in previous sec-
tions, the compression loop has been shortened and the
plateaus made more stiff. The behaviour of this asym-
metric device is shown in Figure 12(b). The frequency–
response curve for an excitation amplitude of g = 0:5 is

shown in Figure 12(a) where the maximum amplitude is
compared to the symmetric case. As the behaviour has
been selected more stiff in compression, the softening
behaviour is less important than in the symmetric case.
Asymmetry is also observable by the fact that maxi-
mum and minimum values of the displacement are now
different. Inset in Figure 12(a) shows minus the mini-
mum displacement (-xmin) for comparison. Figure
12(c) shows the time series of the displacement for
O= 0:6, where this asymmetry is also clearly evidenced:
one can see different values of maximum displacement
in tensile loading and compression, respectively.
Consequently, the Fourier spectrum of the displace-
ment now shows odd and even harmonics, whereas the
displacement corresponding to symmetric restoring
force contains only odd harmonics, as shown in Figure
12(d). This shows that the model is able to reproduce
the more realistic case of an asymmetric restoring force
and reproduce the expected features corresponding to
that case.

Non-isothermal oscillations

As shown previously, SMAs display thermomechanical
coupling, which is responsible for numerous important
effects that have already been underlined (Bernardini
and Rega, 2009; Bernardini and Vestroni, 2003; He
and Sun, 2011; Morin et al., 2011). Hence, it is neces-
sary to take into account this phenomena, when deal-
ing with the dynamic behaviour of the material. The
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equations of motions now include the temperature var-
iations as shown in section ‘Reduced model for a uni-
axial SMA oscillator’. Heat sources are the sum of a
term proportional to _z, describing heat release and
absorption due to the martensitic forward and reverse
transformations (latent heat), together with a term pro-
portional to h, and describing the heat exchange with
external environment. It is worth noting that the cur-
rent contribution neglects thermoelastic coupling effect.
Moreover, choosing the value of the material convec-
tive coefficient h is inspected in Figure 13, showing the
forced response of the non-isothermal system for a for-
cing amplitude of g = 0:8 and a frequency O= 0:8.
Material parameters, unless specified, are those from
case 1 of the previous section (see Table 5 for addi-
tional parameters). In particular, a symmetric internal
restoring force is selected. For h = 0, an adiabatic sys-
tem is at hand. As no thermal energy is transferred to
the environment, the heat generated by the martensitic
transformation remains in the device that continuously
warms up. Hence, no stable state solutions exist for the
temperature, so that this non-realistic case is not prone
to a study on permanent states. As soon as h.0, energy
exchange with environment makes possible the exis-
tence of a permanent regime where the temperature sta-
bilizes at a mean constant value. For increasing values

of h, one can observe that (a) the transient regime is
shorter (for h = 0.01, permanent regime is obtained
after time t = 1000); (b) the mean temperature stabi-
lizes at a smaller value and (c) amplitude of oscillations
around this mean value also decreases. These three
observations are completely in the lines of the thermal
behaviour and the equilibrium between the device and
the external environment, governed by h. The fre-
quency of the oscillations in u is also seen to be twice
that of the displacement x, since for one cycle of the
device, including tension and compression, two cycles
for the temperature are realized. Finally, Figure 13
clearly highlights the fact that the behaviour of u is
almost completely driven by that of the volumic frac-
tion of martensite z.

As highlighted in section ‘Model equations’, the
temperature is prone to show important variations,
especially during a simulation for constructing an FRF
where the initial condition of a new run is selected as
the last values of the precedent (see section ‘Isothermal
oscillations’). Before showing the numerical frequency–
response curves obtained in the non-isothermal case,
the most important effects of initial temperature and
thermomechanical coupling are shown in Figure 14.

Figure 14(a) highlights the fact that for two increas-
ing values of the initial temperature (u0

1 = 408C \
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u0
2 = 538C), force thresholds and loop area increase. In
addition, the already underlined features (thermal
hardening and loop area variation) are retrieved in the
behaviour of the device, as shown in Figure 14(b) that

compares isothermal and non-isothermal stress–strain
relationships, for an initial temperature ui = 408C.

Finally, frequency–response curves are shown in
Figure 15 for two different values of h. Because of ther-
momechanical coupling, as illustrated in Figure 13,
transients are now longer as compared to the isother-
mal case. Hence, the number of periods awaited for the
transient to die away has been set to 320, and the settle
time for recording the maximum amplitude is set to 80
periods. This results in simulation times significantly
longer. As compared to the isothermal case, softening
effect is less pronounced for h= 0:008. For decreasing
values of h, one can see the disappearance of the third
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Table 5. Additional material parameters (specific heat capacity
CP, density r and external medium temperature Text)

Symbol Value

CP 440 J K21 m23 kg21

r 6500 kg m23

Text 333 K
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upper branch occurring for h= 0:001. Small values of
h mean that the material does not get enough time to
evacuate all heat and lead to an increase of the tem-
perature, and as highlighted above, the phase transfor-
mation does not complete.

Figure 16(a) and (b) shows the frequency–response
of the mean value (umoy = 1=N (

PN
i= 1 u(ti)), where N is

the remainder periods in permanent regime) of the tem-
perature and the temperature variation (Du=
umax � umoy), respectively. One can observe similar fea-
tures as that of maximum displacement: jump phenom-
enon, bifurcation at the frequency phase change onset
and the emergency of a third stable branch.

Dissipation as a function of loading frequency

This section investigates the variations of the dissipated
energy in the SMA device, with respect to loading
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frequency in both isothermal and non-isothermal cases.
The dissipated energy is defined by the area of the hys-
teresis loop under one cycle (

H
f _xdt). Figure 17(a) shows

a constant value of dissipated energy (area of hysteresis
loop) remaining in the frequency range 0:2 0:57½ �.
That is due to the accomplishment of phase change and
the absence of viscosity. Indeed, the loop area does not
change with respect to loading frequency.

In the case of non-isothermal oscillations (Figure 17
(b)), the area of the hysteresis loop does not reach a
third stabilized branch in frequency–response and wit-
nesses a decrease as compared to the isothermal case in
the same frequency range. One can highlight that for
small values of h, increasing loading amplitude could
allow to reach a stabilized value of the dissipated
energy.

Conclusion

The model was extended to account for thermomecha-
nical coupling as a means for describing strain rate
dependency. A reduced version was then used to simu-
late the response of a single-degree-of-freedom SMA
oscillator. The simulations were shown to fit experi-
mental data taken from Lacarbonara et al. (2004).
Time integration of the equations of motion using the
reduced model was accomplished using a Newmark
scheme. Deviation from experimental data was dis-
cussed, and new results were obtained for higher forcing
and for asymmetric restoring force. Non-linear features
of the damper response were observed, including jumps,
period-doubling, symmetry-breaking bifurcations and
chaotic responses. The influence of thermomechanical
coupling on the frequency–response and on dissipation
is studied.

The ZM model, as extended in this article, can now
be used to simulate the dynamic response of SMA
structures. Future work will focus on modelling a tor-
sional pendulum system, like the one in Doaré et al.
(2011) and Sbarra et al. (2011).
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