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Abstract

A thin plate, excited by a harmonic external forcing of increasing amplitude, shows transitions
from a periodic response to a chaotic state of wave turbulence. By analogy with the transi-
tion to turbulence observed in fluid mechanics as the Reynolds number is increased, a generic
transition scenario for thin vibrating plates, first experimentally observed, is here numerically
studied. The von Kármán equations for thin plates, which include geometric non-linear ef-
fects, are used to model large amplitude vibrations, and an energy-conserving finite difference
scheme is employed for discretization. The transition scenario involves two bifurcations sepa-
rating three distinct regimes. The first regime is the periodic, weakly non-linear response. The
second is a quasiperiodic state where energy is exchanged between internally resonant modes. It
is observed only when specific internal resonance relationships are fulfilled between the eigen-
frequencies of the structure and the forcing frequency; otherwise a direct transition to the last
turbulent state is observed. This third, or turbulent, regime is characterized by a broadband
Fourier spectrum and a cascade of energy from large to small wavelengths. For perfect plates
including cubic non-linearity, only third-order internalresonances are likely to exist. For imper-
fect plates displaying quadratic nonlinearity, the energyexchanges and the quasiperiodic states
are favored and thus are more easily obtained. Finally, the turbulent regime is characterized in
the light of available theoretical results from wave turbulence theory.

Keywords: transition scenario, thin plate, wave turbulence, bifurcation

1. Introduction

Turbulence and wave turbulence.Turbulence has always been a key research area in fluid me-
chanics and is still considered as a partly unsolved (and perhaps unsolvable) problem due to
fundamental limitations of analytical tools in the case of an infinite hierarchy of cumulant equa-
tions [1, 2]. Zacharov [3], however, introduced a so-calledwave (or weak) turbulence (WT)
theory which may be arrived at by relaxing some of the assumptions that are particularly rele-
vant to fully developed hydrodynamics turbulence (in particular the presence of intermittency),
but by retaining the main assumption of an energy flux throughlengthscales allowing for the
appearance of the Kolmogorov turbulence spectrum. The mainassumptions of WT are that
the nonlinearity is weak, and that waves persist in the dynamical behaviour of the system [4].
With this in mind, closed equations, the so-called kinetic equations, are analytically accessible,
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and hence allow for quantitative predictions. Because of these tractable simplifications, the WT
theory has been applied successfully to numerous physical systems including capillarity and
gravity waves on the surface of liquids [5, 6, 7, 8], plasmas [9], optics [10] and magnetohydro-
dynamics [11].
Turbulence in a solid.Wave turbulence theory can be applied to vibrating structures that can dis-
play, when subjected to large-amplitude motions under a geometric non-linearity, a broadband
Fourier component in the power spectrum of the displacement, revealing turbulent behaviour.
In the musical context, the perceptual importance of this feature has been long since recognized
in instrument design; for example, the broadband Fourier component has been exploited for
a long time in theaters to simulate the sound of thunder by shaking vigorously large metallic
plates. It is also the means of explaining the bright shimmering sound of gongs and cymbals
[12, 13, 14, 15, 16]. From the physical point of view, this vibration state was first studied in the
framework of chaotic behaviour for dynamical systems [17, 14, 18, 19]. However, convergence
of traditional indicators of chaotic dynamics resulting from low-dimensional dynamical systems
(e.g. correlation dimension and Lyapunov exponents) has been found from experiments only
recently in a series of papers by Nagaiet al. [20, 21, 22] where a shell of small dimensions was
excited at moderate amplitudes, so that turbulent behaviour is not excited. Other experimental
studies [23, 24, 13], as well as numerical results [25] reported difficulties in obtaining converged
values for the correlation dimension and/or the Lyapunov exponents. Recently, wave turbulence
theory has been applied to vibrating plates described by thevon Kármán kinematical assump-
tions, hence allowing for a quantitative prediction of the energy repartition through lengthscales
[26], and two different experimental set-ups with very thin plates of large dimensions precisely
accounted for turbulent behaviour [27, 28, 29]. More specifically, no intermittent behaviour
was reported [27] and the persistence of waves has been clearly highlighted [29, 30], so that the
main assumptions of WT are clearly verified experimentally.
Goal. The aim of this paper is to present numerical results allowing the study of the turbulent
behaviour of plates, with or without imperfection, and thisfirst part is more directly concerned
with the transition to turbulence. First, experimental results indicate the generic transition sce-
nario observed in thin structures like plates and shells, when they are excited pointwise with a
harmonic forcing of increasing amplitude. This scenario has already been reported elsewhere
for gongs and cymbals [12, 13, 14, 24, 31, 25]; here experimental results on a rectangular plate
are presented, showing once again the generality of these observations. Next, a numerical model
is presented, allowing for a precise reproduction of the experimental set-up. The model is based
on a finite difference scheme that, in the lossless case, conserves energy to machine accuracy
[32], and allows modelling of pointwise harmonic forcing. Preliminary numerical results have
already been presented for a plate with free edges in [33]; here the case of simply-supported
edges is considered. The transition scenario is then numerically assessed, for the case of perfect
and imperfect plates. Finally, the turbulent state is briefly addressed by comparing the power
spectrum of the numerically obtained velocity to that predicted in [26].

Summary of experimental results.The case of a thin structure (such as a plate, shell, gong
or cymbal) excited pointwise with a harmonic forcing of a given frequencyf exc and linearly
increasing amplitude, is considered. Numerous observations have already been reported on var-
ious kinds of gongs, cymbals and circular spherical-cap shells in [12, 13, 14, 34, 24, 31, 25],
where the pointwise forcing is realized either with a mechanical shaker or with an electromag-
netic device consisting of a magnet glued to the structure surrounded by a coil with controlled
current, as described in [35, 36, 28]. The observed scenariofor the transition to turbulence in
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vibrating structures implies two bifurcations, separating three distinct regimes.
The case is here illustrated in Fig. 1, showing measurementsdrawn from a thin rectangular

plate of lateral dimensions 38cm×29cm and thicknessh=1 mm. The plate is excited at its
centre by a shaker and has free edges. The vibration velocityis measured by a laser vibrometer,
2 centimeters from the center (to avoid laser saturation if measuring near the edges, as can occur
in the turbulent regime where the vibration amplitude can beof the order of one centimeter).
Fig. 1 shows two typical measurements obtained for excitation frequenciesf exc=151 Hz and
290 Hz respectively. The excitation amplitude is increasedlinearly during the experiment,
then maintained at a constant value once the turbulent regime is attained. Spectrograms of the
measured velocity are shown, with time indicated on the abscissa.
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Figure 1:Experimental spectrograms of the vibration velocity for a rectangular plate excited with a har-
monic force of increasing amplitude and frequency 151 Hz (a), and 290 Hz (b). In each case the three
different vibration regimes are clearly identified.

For small excitation amplitude, the regime is moderately nonlinear. In order to optimize
the injection of energy,f exc is generally chosen in the vicinity of one of the structure’slinear
eigenfrequencies. Hence the first regime is essentially a nonlinear unimodal regime, where
the directly excited mode vibrates in the nonlinear regime,characterized by the appearance of
harmonics of the forcing in the response. In the two cases, harmonics of order 2 to 4 are clearly
visible; as imperfections are unavoidable in real plates [37], quadratic nonlinearity is present,
and these even harmonics are observed in the response. Note the presence of harmonics of 50
Hz in the response, at small and constant levels. They are related to the current delivered and
are unavoidable in measurements. They are easily recognizable and must not be interpreted as
physical.

For a given excitation amplitude level, a bifurcation is observed. In Fig. 1(a), a 1:2 inter-
nal resonance is excited, and energy is transferred from thedirectly excited mode to that with
eigenfrequency nearf exc/2. Modal analysis reveals the existence of an eigenmode at frequency
72 Hz, which is here slightly shifted by the nonlinearity andlock-in phenomena to perfectly
fulfill the 1:2 resonance relationship and receive energy from the directly excited mode. The
bifurcation is clearly delimited, as is usual in 1:2 internal resonance where a subcritical bi-
furcation is at hand [38, 39, 40]. Consequently the jump to the coupled branch excites higher
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frequencies resulting in a short transient. Then the coupled 1:2 regime sets in clearly, and finally
appears to be disturbed in the vicinity of the second bifurcation. For f exc= 290 Hz, Fig 1(b),
the first regime becomes unstable in favour of a coupled regime involving two eigenmodes,
whose eigenfrequenciesf1 =95 Hz andf2 =195 Hz are such thatf1 + f2 = f exc, resulting in a
1+1:2 internal resonance relationship. Once again, linear analysis reveals the presence of two
eigenmodes at 90 and 190 Hz respectively, again with frequencies slightly shifted to fulfill the
resonance condition. From these two examples and those already presented in [13, 14, 25], the
generic scenario experimentally observed involves thus a first bifurcation where all the modes
sharing internal resonance relationships of the form :

fi + f j = f exc (1)

are excited through energy exchange, leading to a so-calledquasiperiodic state. The simple
case of 1:2 internal resonance is a particular case of (1) where fi = f j leading to a quasiperiodic
state degenerated in a periodic regime. The frequency peaksappearing in the quasiperiodic
regime can also not be directly related to the excitation frequency. The energy can first be
spread through modes sharing internal resonance with the directly excited modes like (1), then,
once this new subset of frequencies is excited, new modes sharing a resonance relationship of
the form fn ± fp = fk with at least one offn, fp or fk belonging to the first subset of excited
modes, can appear in the vibration. In all the experiments realized, order-two internal resonance
relationships have always been observed, which simply reflect the fact that for real plates with
imperfections, quadratic nonlinearities dominate those of cubic type, so that order-three internal
resonance relationships are completely hidden by those of second order. Fig. 1 shows two
excitation frequencies for which the quasiperiodic regimeappears, but it may not be present
if no evident internal resonance relationships exist. Thishas been observed preferentially for
low-frequency excitations, as the coupling appears to be with modes with frequency smaller
than that of the excitation.

Finally, the second bifurcation occurs and the turbulent regime sets in. It is characterized
by a broadband Fourier spectrum with energy up to 8000 Hz for the two cases shown in Fig 1,
indicating a flux of energy from the injection scale to the dissipative scale.

The aim of this paper is to develop an efficient numerical method in order to study the
transition to turbulence through simulations, allowing validation of the scenario inferred from
experimental measurements, as well as to give more insight to turbulent behaviour.

2. Numerical model

2.1. The von Kármán equations for perfect and imperfect plates

The model chosen here relies on the von Kármán kinematicalassumptions for describing
the geometric (large-amplitude) non-linear behaviour of thin plates. A rectangular plate of
dimensionsLx×Ly and thicknessh is considered, and is of elastic material of densityρ, Young’s
modulusE and Poisson’s ratioν. The equations of motion are given for an imperfect plate
without residual stresses, and comprise a set of two equations for the two unknowns, namely
the transverse displacement ¯w(x, y, t) and the Airy (or stress) function̄F(x, y, t) [41, 42, 43, 37]:

ρh ¨̄w+ D∆∆w̄+ σ̄0 ˙̄w = L(w̄, F̄) + L(w̄0, F̄) + p̄, (2a)

∆∆F̄ = −
Eh
2

[L(w̄, w̄) + 2L(w̄, w̄0)], (2b)
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whereD = Eh3/12(1− ν2) is the flexural rigidity, ¯σ0 is an ad hoc viscous damping coefficient,
and p̄ represents the external forcing applied to the plate. The geometric imperfection is repre-
sented by the displacement ¯w0(x, y, t) of the middle surface. In setting ¯w0 = 0, the von Kármán
equations for perfect plates are recovered. The bilinear operatorL is defined, in Cartesian coor-
dinates, as:

L(F,w) = F,xxw,yy + F,yyw,xx − 2F,xyw,xy (3)

The equations (2) are scaled by using the following transformations:

x =
x̄

√

LxLy

, y =
ȳ
√

LxLy

, w =

√

6(1− ν2)
h

w̄ (4a)

F =
F̄
D
, σ0 =

σ̄0

ρh
, p =

√

6(1− ν2)

ρh2
p̄ (4b)

After substitution, we obtain:

ẅ+ κ2∆∆w+ σ0ẇ = κ
2L(w+ w0, F) + p, (5a)

∆∆F = −L(w,w+ 2w0), (5b)

whereκ2 = D
ρhL2

xL2
y
. The equations of motion (5) will be used in the remainder of the article. It

is worth noting that they are not non-dimensional equations: time has not been scaled, so that
the factorκ has the dimension of a frequency. This choice has been retained for computational
reasons.

In the remainder of the paper, simply supported boundary conditions are chosen. For the
scaled transverse displacementw, simplified boundary conditions are used [44, 45, 16]:

w = 0,
∂2w
∂x2
= 0; for x = 0,

√

Lx

Ly
; ∀y (6a)

w = 0,
∂2w
∂y2
= 0; for y = 0,

√

Ly

Lx
; ∀x. (6b)

For the scaled Airy stress functionF the following boundary conditions have been cho-
sen [45]:

F = 0,
∂F
∂x
= 0; for x = 0,

√

Lx

Ly
;∀y (7a)

F = 0,
∂F
∂y
= 0; for y = 0,

√

Lx

Ly
;∀x (7b)

2.2. Finite difference scheme

In this section a finite difference scheme is introduced to solve the equations of motion
(5) together with boundary conditions (6)-(7). The scheme is a perfectly energy-conserving
scheme (under lossless conditions), to machine accuracy, and has been introduced in [32]. It is
here adapted to the case of forced and damped equations.

5



2.2.1. Grid functions and operators
The main steps for deriving the energy-conserving scheme are here briefly recalled, fol-

lowing the notations and the definitions given in [16, 32]. For more thorough details on the
discrete operators, the reader is referred to [16], and to [32] for the proof that the scheme is
energy-conserving for undamped and unforced equations.

The continuous unknown functionsw(x, y, t) andF(x, y, t) are replaced by their values on a
discrete domain:wn

l,m andFn
l,m, for integerl, m andn. The time index isn where continuous

time t has been replaced by its discrete counterparttn = nht with ht the time step. In the
same manner, the spatial domain is discretized so that the indices l,m are defined through:
(l,m) ∈ [0,Nx] × [0,Ny]. The size of the domain is (Nx + 1)(Ny + 1), and the space steps are
denoted respectively byhx andhy. In practice, the grid spacingshx andhy are fixed by the
stability condition of the scheme (see below), and the number of grid points is deduced from

Nx = E( 1
hx

√

Lx

Ly
) andNy = E( 1

hy

√

Ly

Lx
), whereE(⊺) stands for the integer part of⊺. For minimal

numerical dispersion effects, it is best to choose the grid spacings as close to these bounds as
possible, for a given time step.

The following discrete notations are now introduced. The unit forward and backward time
shift operator are defined through their action on a grid function, saywn

l,m, as:

et+w
n
l,m = wn+1

l,m , et−w
n
l,m = wn−1

l,m . (8)

Classical approximations of the first (centered, forward and backward) and second derivatives
in time read as:

δt. =
1

2ht
(et+ − et−), δt+ =

1
ht

(et+ − 1), δt− =
1
ht

(1− et−), δtt = δt+δt− , (9)

where ”1” stands for the identity operator.
Temporal averaging operator are defined as:

µt+ =
1
2

(et+ + 1), µt− =
1
2

(1+ et−), µt. =
1
2

(et+ + et−), µtt = µt+µt− , (10)

The same definitions clearly follow for the spatial discretevariables, where we will also
need a discrete bi-Laplacian (or biharmonic) operatorδ∆∆ defined from:

δ∆ = δxx + δyy (11)

δ∆∆ = δ∆δ∆ (12)

2.2.2. Conservative scheme
The two-parameter family of energy-conserving schemes (ormonotonically dissipative in

the lossy case) introduced in [32] is here adapted to the caseof the damped and forced problem
defined by (5). For the sake of simplicity, the discrete variableswn

l,m andFn
l,m are simply denoted

by w andF. The family of schemes depends on two parameters namedβ andγ, as:

δttw = −κ
2δ∆∆w− σ0δt.w+ κ

2l(w̃+ w̃0, F̃) + pn
l,m, (13a)

µt−δ∆∆F = −γl(w, et−(w+ 2w0)) − (1− γ)µt− l(w,w+ 2w0). (13b)

where the following terms, directly depending on the two parametersβ andγ, have been intro-
duced:

w̃ = γw+ (1− γ)µt.w, (14a)

w̃0 = γw0 + (1− γ)µt.w0, (14b)

F̃ = βF + (1− β)µt.F. (14c)
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The bilinear operatorL has been discretized asl(w, F) and reads:

l(w, F) = δxxwδyyF + δyywδxxF − 2µx−µy−(δx+y+wδx+y+F). (15)

The external forcing is introduced so as to mimic the experimental results described in the
introduction. Consequently, the dimensioned forcing has been chosen as

p̄(x̄, ȳ, t) = δ(x̄− x̄0)δ(ȳ− ȳ0) Āsin(Ωt), (16)

where Ā is the amplitude of the forcing (in N), andΩ the excitation frequency. The non-
dimensional forcing simply reads:

p(x, y, t) = δ(x− x0)δ(y− y0) Asin(Ωt), with A =

√

6(1− ν2)
ρh2LxLy

Ā (17)

The forcing is pointwise, so that the discretized forcing term pn
l,m appearing in Eq. (13a) is

bilinearly spread to the four nearest neighbours of the chosen excitation point (x0, y0).

The stability condition, which may be derived through energy analysis, is:

β ≤ 1/2 (18a)

ht ≤
h2

xh
2
y

2(h2
x + h2

y)

√

ρh
D

(18b)

under the choice ofγ = 1 andβ = 0. It is worth emphasizing that this condition, identical tothat
which holds in the linear case, is here necessary and sufficient for stability in the fully nonlinear
case as well.

In practice, the sampling ratefS is chosen a priori, and the number of grid points for the
simulation is chosen so as to satisfy the above condition as closely as possible, thus minimizing
numerical dispersion effects.

3. Simulation results for the perfect plate

3.1. Linear convergence

For the simulations, a plate has been chosen with dimensionsLx = 0.4m× Ly = 0.6m, and
thicknessh=1 mm. Material parameters have been set so as to model a steel plate, withE= 200
GPa,ν=0.3 andρ=7860 kg.m−3.

For a simply-supported plate, the radian frequencies are known analytically [44]:

ωa
pq = π

2

√

D
ρh

[

p2

L2
x

+
q2

L2
y

]

, (19)

wherep andq are two integers indicating the number of half-waves in thex andy directions
respectively. Table 1 shows the first 27 exact eigenfrequencies of the chosen plate, ranging from
21.65 Hz (fundamental mode) to 406.29 Hz.

The linear problem associated with (5) allows estimation ofthe numerical eigenfrequen-
cies computed with the finite-difference scheme. As usual with finite differences, a fine grid is
necessary in order to have significant accuracy in the computed frequencies, and the accuracy
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21.65 41.63 66.61 74.93 86.59 119.89 121.55 141.54 161.52
166.52 181.50 194.82 226.46 241.44 246.44 254.76 266.42 299.72
299.72 301.39 341.35 346.35 374.65 381.32 386.31 401.29 406.29

Table 1: Eigenfrequencies (analytical values, in Hz) of theselected plate for the simulations,Lx = 0.4m,Ly = 0.6m,
h=1 mm,E= 200 GPa,ν=0.3 andρ=7860 kg.m−3.

decreases with mode number. It is worth noting, however, that accuracy is rather good over the
entire spectrum, up to the Nyquist frequency—such is not thecase, for example, for Chebyshev
spectral methods, which compute low modes with very high accuracy, but fail spectacularly in
computing high frequency modal frequencies. Because the interest here is in obtaining wide
band responses at a reasonable sample rate, simpler finite difference schemes are a good alter-
native. Figure 2 and Table 2 illustrate the numerical accuracy obtained. In Figure 2, the relative
deviation of the computed eigenfrequencies with respect tothe analytical values are shown by
plotting:

∆i
f =
|ω

fS
i − ω

a
i |

ωa
i

, (20)

whereω fS
i stands for the numerical ith eigenfrequency, computed with the given sampling rate

fS, andωa
i is the analytical ith eigenfrequency recalled in Eq. (19), in the frequency range[0,

5000] Hz. One can see that forfS=100 000 Hz, the relative deviation of the eigenfrequencies is
less than 10% up to 5000 Hz,i.e. until the 370th mode.
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Figure 2:Relative deviation∆i
f between analytical eigenfrequencies of a simply supportedplate and those

computed with the finite difference scheme with increasingfS, in the frequency range [0, 5000] Hz.

Recalling that our interest is matching the experimental observations discussed in the intro-
duction, the frequency range of interest for the choice of the forcing frequency will not exceed
400 Hz, as it allows simulation of the transition scenario upto the 30th mode, hence giving rise
to numerous bifurcations. In the experiments, the same frequency range was also tested, mainly
because the amplitude of forces required to attain the turbulent regime for higher excitation
frequencies is generally out of range for conventional shakers. Table 2 shows, for the computed
eigenfrequencies shown in Figure 2, the number of grid points used, as well as the maximal
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fS Nx Ny (Nx − 1)(Ny − 1) [0,500] Hz [0,2000] Hz [0,5000] Hz [0,10000] Hz

Sampling rate (Hz) Number of grid points up to 34th mode up to 144th mode up to 370th mode up to 755th mode

12500 18 27 442 6.8% 23.5% 41.6% �

25000 25 37 864 3.6% 13.0% 30.4% 41.6%
50000 36 54 1855 1.7% 7.1% 15.1% 28.9%

100000 51 76 3750 0.9% 3.7% 8.3% 15.2%

Table 2: Convergence of numerical eigenfrequencies on selected frequency bands. For each value offS, the number
of grid points used in the scheme is given, as well as the maximum deviation∆i

f on four frequency intervals.

deviations within some selected frequency ranges. One can conclude that a fair accuracy is ob-
tained for the eigenfrequencies up to 500 Hz forfS=25000 Hz, hence allowing the simulation
of the transition to turbulence for the first 30 eigenfrequencies. Obtaining better accuracy for
larger frequency bands requires a number of points for simulation which increases rapidly. As
compared to a preceding study on the transition to chaotic vibrations in circular plates where
a Galerkin modal projection was used to discretize the equations [25], one can conclude that
with the present method, a very large number of modes is retained in the simulation. However
their accuracy is limited although the lower modes are finelyrepresented. Convergence will be
further studied in the next section in order to select an operational value for the simulations.

3.2. Conservation of energy and nonlinear convergence

For the dimensional problem defined by Eqs (2) and without imperfection (w0 = 0 gives a
perfect plate), one can define the kinetic energyT̄, the bendinḡV and the in-plane energȳU as
[38, 16]:

T̄ =
∫ ∫

S̄

ρh
2

˙̄w2dS̄, (21a)

V̄ =
∫ ∫

S̄

D
2

(∆w̄)2dS̄, (21b)

Ū =
∫ ∫

S̄

1
2Eh

(∆F̄)2dS̄, (21c)

whereS̄ = [0, Lx] × [0, Ly] is the dimensional area of the plate. When undamped vibrations
are considered ( ¯σ0 = 0) and for conservative boundary conditions (such as those of simply-
supported type), the total energy of the plate (or Hamiltonian) H̄ = T̄ + V̄ + Ū is conserved
during any motion. Note the simplified form for the bending energy (21b), arising from the fact
that simply-supported boundary conditions are considered[38, 16].

After the scaling defined in Eqs (4), one obtains the following form for the scaled energies:

T̄ =
ρh3LxLy

6(1− ν2)
T, with T =

∫ ∫

S

1
2

ẇ2dS, (22a)

V̄ =
ρh3LxLy

6(1− ν2)
V, with V = κ2

∫ ∫

S

1
2

(∆w)2dS, (22b)

Ū =
ρh3LxLy

6(1− ν2)
U, with U = κ2

∫ ∫

S

1
2

(∆F)2dS, (22c)
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withS=[0,
√

Lx/Ly]×[0,
√

Ly/Lx] the scaled area. The discrete counterparts of the scaled forms
of the energiesT, U andV are defined through:

t =
1
2
||δt−w||

2
s , (23a)

v =
1
2
κ2 < δ∆w, et−δ∆w >s, (23b)

u =
1
2
κ2µt− ||δ∆F ||

2
s , (23c)

where the scalar product< f , g >s between two discrete functionsf ≡ fl,m andg ≡ gl,m defined
on the discrete domains = [0,Nx] × [0,Ny] is given by:

< f , g >s= hxhy

Nx
∑

l=0

Ny
∑

m=0

fl,mgl,m (24)

In Eqs (23), the expression foru is simplified to the specific scheme selected withγ=1 and
β=0. These expressions are constructed so as to obtain the conservation of the total energy
or discrete Hamiltonian of the system. Forσ0 = 0 and conservative boundary conditions, the
conservation relationshipδt+h = 0 with h = t + v + u is demonstrated in [32].

Figure 3 shows a typical simulation with the selected plate,excited with a frequency of
87 Hz (in the vicinity of the fifth eigenfrequency), where theamplitude of the forcing is first
increased from 0 to 30 N in 7 seconds, then kept constant during 7 seconds, and finally set to
zero in the remaining 7 seconds of the simulation. An undamped plate is considered in this
simulation (σ0 = 0) in order to numerically verify the conservation of energy. An arbitrary
output point from the plate is selected for analyzing the vibration. It is located at ¯x = 0.2Lx,
ȳ = 0.3Ly, and will be denoted bywout in the remainder of the article. The spectrogram of
wout shows a transition from periodic to turbulent behaviour occurring att=5 s. As no damping
is considered, the turbulent state persists once the external forcing is set to zero. Figure 3(c)
shows the behaviour of the computed energies during the simulation: the total energyh being
decomposed between its transverset + v and in-planeu components. As long as the forcing is
not cancelled, energy is fed to the plate that can not be dissipated, hence the total energy of the
system increases continuously. Once the forcing set to zero, a perfect conservation of energy
(to machine accuracy) is found. A significant increase of thein-plane energy is observed during
the turbulent behaviour. This peculiar feature will be discussed in section 5 where will we show
that it results from the relaxation of the simulated system to an absolute equilibrium state that
has no physical meaning, and is only a consequence of the truncation imposed by the numerics.
The simulation shown in Fig. 3 has been computed withfS=50 kHz and lasts 18 hours on a
standard PC with a CPU clock at 2 GHz.

The same simulation is shown in Fig. 4, where a linear viscousdamping term has been
added to the dynamics. The damping value has been set toσ0 = 0.75, consistent with what is
observed in metallic plates, as well as what was chosen in [25]. In Fig. 4, the decay time is
around 7 seconds which corresponds to what is usually measured. This value,σ0 = 0.75, will
be kept in the remainder of the study.

The same excitation frequency has been chosen, so that a direct transition is still observed,
as no internal resonance relationships are fulfilled for this excitation frequency. As compared
to the undamped case where energy is present in the whole spectrum, up to fS/2, the damping
limits the frequency span of the turbulent regime by adding adissipative scale to the system.
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Figure 3: Transverse vibration and energy of an undamped plate excited at 87 Hz. (a): transverse dis-
placementwout at one point on the plate and history of the dimensioned loading amplitudeĀ on the right
axis. (b): Spectrogram ofwout. (c): Total discrete energy (arbitrary units)h (black) of the plate during the
simulation, decomposed into its bending (transverse) componentt+ v (blue) and its in-plane component
u (magenta).
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Figure 4:Transverse vibration and energy of the damped plate (σ0=0.75) excited at 87 Hz. (a): output
transverse displacementwout and history of the loading amplitudēA. (b): Spectrogram ofwout. (c):
Total discrete energyh (black) of the plate during the simulation: transverse componentt + v (blue) and
in-plane componentu (magenta).
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Here, energy is present up to 10 kHz. The energetic behaviourshows that in-plane energyu
remains limited to very small values so that transverse energy t + v is almost superposed toh.

X
X
X
X
X
X
X
X
X
X
X
X

f exc (Hz)
fS (kHz)

2.5 5 10 15 25 35 50 75

22 Hz 5.8 10.1 7.1 14.4 15.8 15.8 15.8 �

75 Hz 3.4 6.1 7.1 11.8 10.1 10.1 10.1 �

227 Hz 4.9 8.6 13.1 18.1 18.9 18.9 20.1 20.1

Table 3: Critical valueĀcr (in N) of the amplitude of the external forcing for which the turbulent behaviour sets
in, as a function of the sampling frequencyfS in kHz (first row), and for three different excitation frequencies
f exc= Ω/2π: 22 Hz, 75 Hz and 227 Hz.

In order to gain some insight into (and confidence in) the convergence of the numerical re-
sults with respect to the chosen sampling ratefS and consequently the number of grid points
used to simulate the plate dynamics, a convergence study with respect to the critical force
needed to attain the turbulent behaviour is conducted, in the same manner as in [25]. More
specifically, in order to obtain the long-term behaviour of the plate for a given forcing ampli-
tude, instead of continuously increasingA, the variation interval [0,Amax] is separated into 50
steps, and A is incremented by small steps (around 0.5 N) and aconstant value is maintained on
each subinterval. The length of each subinterval is 350 periods so that the transient behaviour
can be fully damped, and after that 60 periods of the vibration response are recorded for ana-
lyzing the behaviour (periodic, quasi-periodic or turbulent). This kind of numerical simulation
strictly follows themodus operandipresented in [25] for circular plates. This results in ex-
tremely long simulations that lasts around 3 weeks for each of the three forcing frequencies
tested. Table 3 shows the obtained results for increasing values of fS, where the critical force
Ācr (in N), where the turbulent behaviour sets in, is reported. For fS=35 kHz, the critical forcing
amplitude obtained is converged. This observation recovers results already shown [25] explain-
ing that this critical forcing value appears to be controlled by the low-frequency part of the
dynamics (slow-flow equations), so that a very refined grid isnot necessary for obtaining con-
vergence in the first regime. This will not be the case anymorefor the turbulent regime where
higher values offS are needed due to the presence of the energy flux through lengthscales. this
will be discussed in section 5. For studying the transition scenario, the sampling frequency has
been selected asfS = 50 kHz.

In order to get a complete picture of the transition scenario, 33 simulations have been re-
alized for frequencies in the range [20, 350] Hz. Within thisfrequency range, 21 modes are
present. 21 simulations have thus been realized around the eigenfrequencies, from 22 Hz for
the first to 342 Hz for the 21th, and 12 additional frequencies have been tested to observe the
scenario away from linear resonances. The results are divided in two frequency bands, ”low fre-
quency” from the fundamental to the ninth mode at 162 Hz, and ”high frequency” from 167 Hz
to 342 Hz. This distinction is made with regard to the obtained results. As will be shown subse-
quently, in the low frequency range, the generic transitionscenario observed is that of a direct
transition to turbulence, whereas in the ”high frequency” range, the most common encountered
case was that of a three-stage scenario with the appearance of the quasiperiodic regime before
the turbulent state.
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3.3. Low frequency excitation

3.3.1. Generic case
In the low frequency range, 17 frequencies have been tested.They are given as follows, in

parenthesis is indicated the critical valueĀcr (in N) for which the turbulent behaviour sets in: 22
Hz (22 N), 42 Hz (56 N), 65 Hz (51 N), 67 Hz (38 N), 70 Hz (18 N), 75 Hz (16 N), 80 Hz (15
N), 87 Hz (21 N), 118 Hz (56 N), 120 Hz (54 N), 122 Hz (55 N), 125 Hz(52 N), 127 Hz (25 N),
130 Hz (18 N), 131 Hz (20 N), 142 Hz (15 N) and 154 Hz (45 N). Note that the critical force
amplitudeĀcr is given in an indicative manner, and the values can be slighlty different from
those reported in Table 3.2 as in these experiments the forcing amplitude was linearly increased
in 20 seconds without waiting for the transient to die away ateach force step. A more thorough
study of the critical force is reported in [25] for circular plates.
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Figure 5:Spectrogram of output displacementwout for the plate excited at 154 Hz, with a linearly increas-
ing force from 0 to 60 N over 20 seconds. A direct transition toturbulence is observed, occurring at t=15
s, i.e. for F=45 N.

Figure 5, where the plate is excited at 154 Hz, shows the generic case observed in the low
frequency range: a direct transition to turbulence, as is also the case presented in Fig. 4 with
f exc=87 Hz. In both cases, a first regime is obtained where the directly excited mode vibrates
nonlinearly, hence creating odd harmonics of the excitation frequency that are clearly present.
As expected from perfect non-linear plate dynamics containing only a cubic nonlinearity due to
the internal force symmetry with respect to the middle surface, no even harmonics are present
in the response. In Fig. 4 withf exc=87 Hz, i.e. in the vicinity of the fifth mode, the turbu-
lent behaviour suddenly settles down forF=21 N, whereas this critical amplitude needs to be
attained at 45 N forf exc=154 Hz, mainly because 154 Hz is not in the vicinity of an eigen-
frequency so that a higher amplitude is needed to attain large amplitudes of vibrations (linear
resonance). The direct transition has been observed for allthe frequencies tested in the low-
frequency range, namely for : 22 Hz, 42 Hz, 70 Hz, 80 Hz, 87 Hz, 118 Hz, 120 Hz, 122 Hz,
125 Hz, 131 Hz and 154 Hz. This generic behaviour is interpreted as a reflection of the fact
that no internal resonance relationships exist between thevery low-order eigenfrequencies that
are excited here. Hence the energy is stored in an eigenmode motion which cannot exchange its
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energy with other internally resonant modes, until the stability limit is attained and the turbulent
regime sets in. As the direct transition do not need specific investigations, we turn now to the
analysis of the particular cases obtained for some frequencies in the low-frequency range.

3.3.2. Particular cases
The six remaining frequencies show a different transition scenario, three of them being

illustrated in Figs 6, 7 and 8.
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Figure 6: (a): Spectrogram of output displacementwout for the plate excited at 75 Hz, with a forcing
amplitudeF from 0 to 28 N in 14 seconds. A superharmonic resonance is excited with participation of
the first mode locked at 25 Hz from t=5 s, then the turbulent regime is obtained at t=8 s,i.e. for F=16 N.
(b): Fourier transform of a 1.3 sec (Hanning window of 216=65536 points) computed att=6 s showing
the spectral content of the vibration in the coupled superharmonic regime.

The first particular case studied is represented in Figure 6,observed forf exc=75 Hz, i.e. in
the vicinity of the fourth mode of the plate. The amplitude ofthe forcing is increased linearly
from 0 to 28 N in 14 seconds. The first regime is the moderately non-linear regime where only
the directly excited mode participates in the plate response. At t=5 s, a bifurcation is observed
with the clear appearance of a frequency of 25 Hz in the vibration, as highlighted in Fig. 6(b).
This frequency peak is the signature of the first eigenmode participation through a superhar-
monic 1:3 resonance. It occurs for a non-negligible forcingamplitude (10 N), mainly because
the 1:3 resonance relationship is not perfectly satisfied. Hence the 1:3 resonance relationship
can be satisfied only for an energy that is sufficient so as to obtain a frequency shift of the first
mode. The fact that internal resonance can occur between modes that are not commensurate
natural frequencies has already been observed in [46, 47, 48, 49]. When increasing amplitudes
of vibrations and thus the total energy level, periodic solutions follow nonlinear normal mode
(NNM) branches, showing large variations of frequencies. Thus internal resonances can be ful-
filled between the shifted frequencies, so that the examination of natural frequencies to predict
possible mode coupling is not enough. A correct representation is to compute the variations
of all eigenfrequencies as a function of the total energy of the system, resulting in a so-called
Frequency-Energy Plot (FEP) [50]. The numerical result obtained here forf exc=75 Hz seems to
verify this kind of behaviour and resembles the results shown in [48] on a simple two degrees-
of-freedom (dofs) system. This assumption could be fully confirmed by computing the complete
FEP of the plate for the first frequencies, which is out of the scope of the present study. Once
activation of the 1:3 superharmonic resonance is realized,the spectrum, shown in Fig. 6(b), is
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logically composed of peaks being separated by 75-25= 50 Hz. However, one can observe that
the third peak at 125 Hz is proeminent as compared to the followings, as it has almost equal
energy than the spectral component at 25 Hz. As the seventh mode of the plate is given at 121.5
Hz, a possible assumption here is that this mode is also excited via energy transfer so that a
3-modes dynamics is present after the first bifurcation. Thecoupled regime persists during 4
seconds and is enriched in spectral content with an increaseof the width of the spectral peaks,
until the turbulent regime sets in for a forcing amplitude ofF=16 N.
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Figure 7:(a): Spectrogram of output vibrationwout for the plate excited at 67 Hz, with a forcing amplitude
F from 0 to 50 N in 20 seconds. A symmetry-breaking (SB) bifurcation is observed with the appearance
of even harmonics in the response, before the turbulent regime. (b): Fourier transform of a 1.3 sec
segment (Hanning window of 216=65536 points) computed att=14.5 s showing the spectral content of
the vibration after the SB bifurcation.

Surprisingly enough, the 1:3 superharmonic resonance has not been observed in the vicinity
of the third mode, the eigenfrequency of which more closely fulfills the 1:3 ratio needed. This
is confirmed in Fig. 7 where the scenario forf exc=67 Hz is shown. For this frequency, the
1:3 resonance is not excited, and a symmetry-breaking (SB) bifurcation is observed, which is
characterized by the appearance of even harmonics in the response before the turbulent regime
and a wideband Fourier spectrum. The SB bifurcation is classically observed in the Duffing
equation, its location in the plane being, in frequency, between the 1:3 superharmonic and the
main resonance; seee.g. [51, 52]. It has also been observed in the FEP of the two dofs system
analyzed in [48, 49], where it was found to appear before the 1:3 internal resonance, what also
seems to be observed here in the case of the plate. Once again,a complete picture of the internal
resonance must include the energy level, so that a FEP shouldfully confirm the assumptions for
the mode coupling observed here forf exc=75 Hz andf exc=67 Hz.

Finally, two other numerical experiments have been conducted in this frequency range,
f exc=65 Hz and 70 Hz. Forf exc=65 Hz, neither the SB bifurcation is found, nor the super-
harmonic resonance. Instead, a short quasiperiodic regimesets in with a clear appearance of
frequency peaks at 25 Hz, 105 Hz and 155 Hz between the excitation frequency and the third
harmonic at 195 Hz. These five frequencies fulfill third-order relationships so that an energy
transfer is at hand. However, apart from the first frequency at 25 Hz that can be easily related
to the first mode, it appears to be more difficult to relate the two new frequencies at 105 and
155 Hz to an eigenfrequency. Noting that the first regime is destabilized at a high value of
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the forcing (around 50 N) forf exc=65 Hz, one can conclude that the frequencies have already
encountered a large variation due to nonlinearity. In the last test withf exc=70 Hz, a direct transi-
tion is obtained, highlighting that the internal resonancerelationships exist on narrow frequency
intervals.
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Figure 8: (a): Spectrogram of the output vibrationwout for the plate excited at 130 Hz, with a forcing
amplitudeF from 0 to 30 N in 10 seconds. A direct transition is observed with frequency peaks of
increasing width just before the turbulent regime. (b) and (c) : Fourier transforms of a 1.3 sec segment
computed respectively att=5 s andt=8 s.

The last case shown for the low frequency range is represented in Fig. 8, for f exc=130 Hz.
A similar behaviour has also been found forf exc=127 Hz and 142 Hz. Here the peculiar feature
is a marked broadening of the spectral peaks around all harmonics just before the turbulent
regime, as illustrated in the two spectra of the output displacementwout shown in Fig. 8(b-c).
The interpretation of this bifurcation is not straightforward in this case, as it appears slightly
different from a direct transition, but it could also be seen as a quasiperiodic state involving
so many modes that peak identification is difficult. We note also that this spectral enlargement
is one of the characteristics of modulation instability [53, 54, 55], which could be the correct
interpretation in these cases. It is worth noting that thesekinds of transitions have also been
observed experimentally. Further research specifically concentrated on this case is however
needed to ensure the category in which it falls. In the remainder of the article, this type of
scenario will be called, for lack of a better term, modulation instability; at this stage it is simply
a blanket term for a phenomenon that needs a more complete characterization.

3.4. High frequency excitation

In this section we discuss the results obtained in the frequency range [167, 342] Hz, here
called the ”high frequency range” because the observed scenario differs radically from the cases
discussed in the previous section. 15 numerical experiments have been conducted, and only two
direct transitions without quasiperiodic regime have beenfound, whereas ten cases of energy
transfer within the quasiperiodic regime have been observed, and three cases corresponding to
the more difficult case shown previously withf exc=130 Hz and called modulation instability.
The tested frequencies are (in parenthesis the case obeserved: D for direct transition, QP for
quasiperiodic regime, MI for Modulation instability, as well as the critical force amplitudēAcr

(in N) for which the turbulent behaviour sets in): 167 Hz (QP,58 N), 171 Hz (MI, 30 N), 182 Hz
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(QP, 31 N), 184 Hz (QP, 37 N), 190 Hz (QP, 21 N), 195 Hz (QP, 24 N),198 Hz (QP, 66 N), 202
Hz (D, 19 N), 227 Hz (MI, 82 N), 230 Hz (QP, 100 N), 247 Hz (MI, 18 N), 300 Hz (QP, 42 N),
302 Hz (QP, 40 N), 304 Hz (QP, 20 N), 342 Hz (D, 50 N). Hence the dominant observed scenario
is that of the appearance of the quasiperiodic regime, whichwill now be further highlighted. It
is explained by the fact that exciting the plate at a higher frequency with numerous eigenmodes
before the excitation frequency renders possible a larger number of resonance relationships,
hence making this scenario more likely to appear. Three cases are shown and discussed.
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Figure 9:Transition scenario to turbulence for the perfect plate excited at 167 Hz, with a forcing amplitude
from 0 to 65 N in 30 seconds. (a) : time series of the output displacementwout. (b) : spectrogram of the
vibration. (c) and (d) : Fourier transforms of 1.3 s of the displacement, respectively at t=7.5 s (c), and
t=23 s (d).

The first case is that of the excitation frequencyf exc=167 Hz, in the vicinity of the tenth
mode, depicted in Fig. 9, where the amplitude of the forcingĀ is increased from 0 to 65 N in
30 seconds. A first bifurcation is observed att=7.5 s, leading to a transient regime that fail to
stabilize and lasts 5 seconds. This unstable transient regime is characterized by an increased
width of the spectral peaks of the forcing harmonics, as shown in the first spectrum in Fig. 9(c).
Then the stable quasiperiodic regime sets in, with a clear appearance of distinct frequency peaks
shown in Fig. 9(d). For a better identification, the most prominent frequency peaks are denoted
as: f1 = 28 Hz, f2 = 69 Hz, f3 = f exc = 167 Hz, f4 = 265 Hz, f5 = 306 Hz, f6 = 362 Hz, f7
= 403 Hz, f8 = 3 f exc = 501 Hz andf9 = 599 Hz. All of these new frequencies share evident
order-three internal resonances amongst themselves, highlighting the fact that energy has been
transferred in order to arrive at the quasiperiodic regime.For most of them, they can also be
easily identified to eigenfrequencies of the plate. From theorder of appearance and respective
magnitude of these peaks, the following scenarios can be identified. The first frequencies to
appear, f2, f4, f7 and f9 are related to the excitation frequencyf3 = f exc by the following
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relationships:

f3 = f7 − f2 − f3, (25a)

f3 = f9 − f4 − f3. (25b)

Moreover, f2, f4, f7 and f9 are near eigenfrequencies, respectively to modes number 3,17, 26
and 41. Hence a first double order-three internal resonance is excited leading to a quasiperiodic
regime with 5 modes exchanging energy. This 5-modes dynamics is rapidly destabilized for
a more complicated regime including more modes, corresponding to all the frequency peaks
identified in Fig. 9. These new frequencies appear with a little delay as compared to the first
four identified, but they also share evident order-three relationships:

f3 = f4 + f7 − f8, (26a)

f3 = f6 + f5 − f8, (26b)

f3 = f1 + f8 − f6. (26c)

Eventually, the quasiperiodic regime involves 9 modes excited through energy transfers. The
last bifurcation involves destabilization of this complicated 9-modes dynamics in favour of the
turbulent regime.
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Figure 10:Transition scenario to turbulence for the perfect plate excited at 195 Hz, with a forcing am-
plitude from 0 to 35 N in 30 seconds. (a) : time series of the output displacementwout, zoom on the
transition between 19 and 26 s. (b) : spectrogram of the vibration. (c) and (d) : Fourier transforms of
0.65 s of the displacement, respectively at t=20 s (c), and t=21.1 s (d).

The second case selected for analysis is shown in Fig. 10, andcorresponds to an excitation
frequency off exc= 195 Hz, in the vicinity of the 12th eigenfrequency. The forcing amplitude
is increased from 0 to 35 N in 30 seconds in this numerical experiment. The spectrogram, in
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Fig. 10(b), shows a clear scenario with a quasiperiodic state before the turbulent regime. The
quasiperiodic state sets in progressively with the appearance of the following frequency peaks,
identified in Fig. 10(b-c) :f1 = 20 Hz, f2 = 87.5 Hz,f3 = f exc= 195 Hz, f4 = 302.5 Hz,f5 = 370
Hz, f6 = 410 Hz, f7 = 477.5 Hz, f8 = 3 f exc= 585 Hz. The first step involves energy transfers
betweenf2 (in the vicinity of mode 5),f4 (mode 20),f7 (mode 32). The energy, injected on
f3 = f exc = 195 Hz spread to these new frequency peaks appearing first in the spectrogram
through the following order-three internal resonance relationships:

2 f3 = f2 + f4 = f7 − f2. (27)

Then, as shown in the displacement spectrum in Fig. 10(c), a new set of frequencies is excited
through new internal resonance relationships. They appearlater in the spectrogram with a
smaller amplitude, indicating that the first identified resonance dominates. These new peaks,
f1, f5 and f6 are not directly related to the excitation frequencyf3 = f exc or its third harmonics,
so that their appearance is conditioned by the fact that the first step has been excited and that
energy is present inf2, f4 and/or f7. This second instability is characterized by energy transfers
through the following identified relationships:

f3 = f1 + 2 f2, (28a)

f4 = f1 + f2 + f3, (28b)

f5 = f4 + f2 − f1, (28c)

f6 = f4 + f2 + f1, (28d)

f7 = f2 + f1 + f5. (28e)

After this second instability, the quasiperiodic regime involves 8 modes. It is quickly destabi-
lized in favour of the turbulent regime which sets in rapidly. Interestingly, once the turbulent
regime is attained, energy is redistributed through all thelengthscales, so that the most promi-
nent peaks, identified in Fig. 10(d), are distinct from the ones identified in the quasiperiodic
regime, where the frequencies were locked to fulfill internal resonance relationships.

The last case analyzed is shown in Fig. 11, forf exc= 230 Hz, with a forcing amplitude
increasing from 0 to 110 N in 20 seconds. Once again a clear quasiperiodic regime sets in
before the turbulent behaviour, hence recovering the general transition scenario inferred from
the experimental measurements. The quasiperiodic state ismuch more complicated in this case
with the appearance of 5 frequencies under the excitation frequency. All the frequency peaks
share order-three internal resonance relationships, and there is a gap of 40 Hz between the
majority of them.

Finally, all other excitation frequencies tested in this ”high frequency” range show a similar
behaviour to that observed in the three cases illustrated. Consequently the generic transition
scenario is fully confirmed by these numerical experiments.We now turn to an imperfect plate
to simulate a more realistic case, because in experiments imperfections are unavoidable and
order-two internal resonances in the quasiperiodic regimeare always observed.

4. Simulation results for the imperfect plate

4.1. Selected case
The case of an imperfect plate is now studied by imposing a static deflectionw0(x, y) to the

mid-plane of the plate having the form of a raised cosine:

w0(x, y) =
1
2

Aimp















1+ cos















π
√

(x− x0)2 + (y− y0)2

Limp





























; (29)

20



0 250 500 750
10

−8

10
−6

10
−4

10
−2

10
0

30

70

110 150

190

230 270

310 350

390

430

489
570

609

650
660

690
730

t  [s] f [Hz]

f [
H

z]
(a) (b)

Figure 11:(a): Spectrogram of the vibrationwout for the perfect plate excited at 230 Hz, with a forcing
amplitudeF from 0 to 110 N in 20 seconds. (b): Fourier transform of 1.3 secof the displacement at
t=15 s.
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Figure 12: (a): cross-section (in thex and y directions) of the imperfection of amplitudeAimp (in m)
considered for the plate. (b): three-dimensional view of the imperfect plate. (c) : eigenfrequencies (in
Hz) for increasing values ofAimp.

whereAimp is the height (in m) of the imposed static deflection, andLimp its width. The imper-
fection is centered at (x0, y0), as is shown in Fig. 12(a,b) forx0 = Lx/2 andy0 = Ly/2 which
will be the case considered in the remainder of the study. Allthe other parameters (material
parametersρ, E andν, sizeLx, Ly and thicknessh) are unchanged with respect to the preceding
case so as to illustrate a continuous deviation from the perfect case studied in preceding section.
The widthLimp has been set to 0.2 m.

A modal analysis can be conducted by considering the linear part of Eqs.(2):

ρh ¨̄w+ D∆∆w̄ = L(w̄0, F̄), (30a)

∆∆F̄ = −EhL(w̄, w̄0), (30b)

The associated eigenproblem is solved by using the finite-difference operators introduced in
section 2. For increasing values of the imperfection amplitudeAimp from 0 to 5 mm, the evolu-
tion of the eigenfrequencies is shown in Fig. 12(c). In the remaining cases, the valueAimp=1mm
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(equal to the thickness) is chosen for the simulations. Table 4 gives the first 18 eigenfrequencies
for this case, computed withfS=50 kHz (Nx=36, Ny=54), i.e. the sampling frequency used for
the dynamical simulations.

24.81 42.34 68.33 81.63 87.24 122.35 124.78 145.78 162.56
166.49 184.10 198.76 226.42 241.67 247.69 255.65 265.61 298.38

Table 4: Eigenfrequencies for the imperfect plate chosen for the simulations, computed withNx=36,Ny=54 spatial
points (fS=50 kHz). Dimensions are:Lx = 0.4m, Ly = 0.6m, h=1 mm, Aimp=1mm, Limp = 0.2 m, material
parameters are:E= 200 GPa,ν=0.3 andρ=7860 kg.m−3.

4.2. Transition scenario

As compared to the perfect plate, the distinction between low and high frequencies does
not appear in the simulations conducted. This appears naturally as a reflection of the fact that
adding quadratic nonlinearity enables more simple order-two internal resonance relationships
so that the scenario with the quasiperiodic state appears for the very first frequencies. A set
of 24 simulations has been conducted forf exc ranging from 25 Hz (second mode) to 202 Hz,
in the vicinity of the 12th mode (eigenfrequency at 199.25 Hz),i.e. in a somewhat narrower
frequency band than for the perfect plate. The list of the frequencies tested (and in parenthesis
the observed scenario: D for direct transition, QP for appearance of the quasiperiodic state
(the resonance relationship is indicated when it was evident otherwise nothing is mentioned
indicating that a single resonance could not be identified),MI for the last case where the direct
transition is not clearly marked, as in the perfect case, as well as the critical force amplitudēAcr

(in N) for which the turbulent behaviour sets in) is: 26 Hz (D,20 N), 42 Hz (D, 45 N), 70 Hz
(D, 10 N), 81 Hz (D, 15 N), 84 Hz (QP, 8 N), 85.5 Hz (QP, 1:2 case, 10 N), 87 Hz (QP, 1:2, 11
N), 92 Hz (D, 20 N), 109 Hz (QP, 62 N), 111 Hz (D, 60 N), 120 Hz (D, 58 N), 123 Hz (MI, 54
N), 130 Hz (QP, 12 N), 137 Hz (MI, 24 N), 140 Hz (D, 25 N), 142 Hz (D, 21 N), 147 Hz (MI,
10 N), 150 Hz (QP, 22 N), 160 Hz (QP, 1+1:2, 46 N), 162 Hz (QP, 44 N), 164 Hz (QP, 42 N),
167 Hz (QP, 45 N), 180 Hz (QP, 1:2, 35 N), 202 Hz (MI, 14 N). Hencein the 24 simulations
run, only 9 direct transitions are observed, which is markedly in contrast with the perfect plate.
It is thus concluded that the presence of quadratic nonlinearity favours the mode coupling and
the appearance of energy exchange leading to a quasiperiodic state, which can be more easily
degenerated in this case due to occurrences of 1:2 resonance.

Fig. 13 shows the simulation results obtained forf exc=85.5 Hz. The 1:2 internal resonance
is activated for very small values of the forcing amplitude.The coupling is with the second
mode, the eigenfrequency of which is 42 Hz. One may also note the appearance of all even har-
monics of the forcing frequency, in accordance with the presence of the quadratic nonlinearity.
The coupled regime where the two modes are present in the vibration persists until the forcing
amplitude attains the value of̄A= 12 N, a smaller value for obtaining the turbulent regime as
compared to those observed for the perfect plate. This is in accordance with numerical results
presented in [25].

A more complicated case is now analyzed forf exc=109 Hz, presented in Fig. 14. The
spectrogram and the Fourier spectrum of the displacement shown in Fig. 14(b) indicate that
a first energy transfer follows from 1+1:2 internal resonance. The modes number 1 and 4,
whose eigenfrequency are respectively 24.8 and 81.6 Hz, areexcited and slightly shifted so as
to perfectly fulfill the relationshipf1 + f4 = f exc, with f1=26.3 Hz, andf4=82.7 Hz. The other
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Figure 13:Spectrogram of output for the imperfect plate excited at 85.5 Hz, with a forcing amplitudeF
from 0 to 60 N in 20 seconds (with only the first 8 seconds shown). A clear 1:2 internal resonance is
excited forF=4 N before the turbulent regime sets in forF=12 N.
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Figure 14:(a) Spectrogram of output for the imperfect plate excited at109 Hz, with a forcing amplitude
F from 0 to 50 N in 20 seconds. (b) Fourier transform of 1.3 sec ofthe displacementwout at t=14 s,
showing the combination resonances before the turbulent behaviour.

frequencies noted in the Fourier spectrum are denoted as:f2=52.3 Hz,f3=56.4 Hz,f5= f exc=109
Hz, f6=135.4 Hz, f7=161.6 Hz, f8=165.6 Hz, f9=191.9 Hz, f10=2 f exc=218 Hz. Inspecting
the internal resonance relationships existing over this set of frequencies, one can see that the
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following order-two resonance relationships are fulfilled:

f1 + f3 = f4, (31a)

f1 + f8 = f9, (31b)

f3 + f7 = f10. (31c)

These three relations allows and explanation for energy transfer and the appearance of frequency
peaksf3, f8, f9 and f7. Finally f2 and f6 are not involved in any order-two relationships. Thus we
assume here that the presence of these frequency peaks is dueto order-three internal resonance
relationships, as one can verify that:

f2 = f7 + f4 − f9, (32a)

f6 = f7 + f9 − f10. (32b)

To conclude with this section, the distinction between low frequency and high frequency
range for the imperfect plate has no meaning anymore since the generic transition scenario with
the quasiperiodic state is the most frequently observed. The particular case of the perfect plate,
unreachable in real experiments, enforces to make this distinction due to the lack of possible
internal resonance that must mandatory be of order-three, and thus more difficult to activate.
As soon as a small imperfection is considered (here equal to the thicknessh), quadratic non-
linearity is at hand, and energy transfer through quadraticcouplings are more easily obtained.
These numerical results confirms in particular that the imperfect plate is more likely to undergo
instabilities for low levels of vibratory energy, as already shown in [25].

5. Turbulent behaviour

5.1. Wave Turbulence

In this section, we analyze the regime occurring after the second bifurcation and charac-
terized by a broadband Fourier spectrum. Recently, theoretical and experimental studies have
revealed that the correct framework for analysis is that of aweakly turbulent behaviour, cor-
roborating preliminary experimental studies revealing the divergence of dimension calculations
when using classical indicators of low-dimensional chaos [23, 13]. Düringet alapply the Wave
Turbulence Theory (WTT) to von Kármán equations of motions governing the non linear dy-
namics of thin plates, showing the existence of a direct cascade of energy through lengthscales
and deriving their statistical properties in terms of energy repartition [26]. In particular, they
show that the power spectrumPw(k) for the displacementw, for a perfect plate, must verify the
following dependence:

Pw(k) = C
P1/3

[12(1− ν2)]1/6

ln1/3(k⋆/k)
√

E/ρ k4
, (33)

whereC is a constant,P is the injected power, andk = ||k|| the modulus of the two-dimensional
wavenumber. Omitting the log-dependence that is neglectable before thek−4 one, and translat-
ing the theoretical prediction in the frequency domain and for the velocityẇ, one obtains:

Pẇ( f ) =
C′P1/3h

[12(1− ν2)]2/3
f 0 (34)

where the termf 0 has been written explicitly to underline the flat dependenceas function of
the frequencyf . Experimental measurements reported in [27, 29, 28, 56, 57,30] shows a
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discrepancy between theory and experiments that is attributed to the presence of damping, not
taken into account in the theoretical derivations.

Here we want to compare the results of our simulations with the predictions provided by
WTT. Consequently, an undamped plate is selected so as to verify the energy repartition of the
power spectrum given by (34). Note that in [26], a numerical scheme based on a pseudospectral
method has already been used to validate the theoretical prediction.

Figure 15 shows a snapshot of the transverse displacementw and velocityẇ for the plate
excited with an amplitude of̄A=30 N and an excitation frequency off exc= 87 Hz, correspond-
ing to Fig. 3. The spectrum of the displacement beingk-dependent ask−4, the snapshot of the
displacement is quite smooth, while for the velocity higherfrequencies are much more appre-
ciable. This figure from numerical simulation can be compared to deformation and velocity
measured experimentally and shown in [30].

x
y

x
y

w [m] w [m/s]

(a) (b)

Figure 15:(a) Transverse displacement of the platew(x, y) in the turbulent regime. (b) Transverse velocity
ẇ(x, y). The undamped plate is excited atf exc= 87 Hz with a forcing amplitudēA=30 N.

5.2. Power spectra

Numerical simulations of turbulent behaviour in conservative media are difficult because of
the simultaneous presence of a cascade of energy (a priori infinite) from large to small length-
scales and the absence of dissipation in the system. As the energy flux enforces the creation
of smaller and smaller lengthscales, a numerical problem isencountered when the Nyquist fre-
quency, being half the sampling frequencyfS, is attained. From that, energy comes back into the
simulation box as it should normally go to smaller lengthscales that are not simulated. Hence
conducting numerical simulations in the undamped case requires, a priori, a very high value of
fS in order to have a frequency band of interest where the cascade develops without numerical
interference.

This is illustrated in Fig. 16, where the complete spectrograms of two simulations with the
same set are shown, and for two different sampling frequencyfS. The undamped plate (σ0 = 0)
is excited withf exc= 75 Hz, the amplitude of the forcing being increased from 0 to 80 N in two
seconds, then kept constant during 8 seconds and finally cut off until the end of the simulation.
In Figs 16(a-c), the sampling frequency isfS= 100 kHz, while in Figs 16(b-d) it has been set
to 400 kHz. The spectrograms are shown from 0 to the Nyquist frequency. The scheme itself
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In the limit of high sample rate, and if the grid spacings are chosen exactly according to the
stability condition, this cutoff is precisely the Nyquist frequencyfS/2; in practice, however,
there will be a slight loss of bandwidth due to a choice of gridspacings away from this bound
(so, e.g., one may have the domain divided evenly into an integer number of grid points along
each dimension).

For fS = 100 kHz, one can observe that the upper frequency generated by the cascade
quickly attains the Nyquist frequency. Due to the numericallimitation, the energy seems to
be blocked in the very high frequency range, and starts to accumulate. Hence from that point,
the computed solutions are not physical anymore, and what isobserved is due to numerical
limitations. This is also clearly seen on the energies. ForfS = 100 kHz, on can see in Fig. 16(c)
that up to 5 seconds, the total energy increases linearly, the in-plane energy being maintained
at a neglectable value. Then this in-plane energy starts to increase slowly and dramatically,
with an evident broke-up in the slope of the total and bendingenergies. From that moment
the numerical solutions are non physical anymore. What is observed is a sort of thermalization
where the system relaxes to an absolute equilibrium state completely driven by the numerical
limitation. Similar numerical observations are shown for Euler flows in turbulent regime [58].

For fS = 400 kHz, the time for the energy flux to generate an upper frequency attaining the
Nyquist frequency is enough so that the numerical results can be taken as reliable, untilt= 9
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seconds, where the slope of the energy is suddenly broken. From that point, one can see that the
in-plane energy starts to increase slowly, whereas the bending one starts to slowly decrease. If
the simulation have been ran on a longer time, the final state reached by the system would have
been the same as that observed forfS = 100 kHz. A simulation realized withfS = 200 kHz
confirms the scenario by showing an intermediate stage. Hence for obtaining reliable results in
the undamped case, a very high value offS has to be selected, which renders the computation
extremely long. ForfS = 400 kHz and the plate selected, the number of grid points wasNx =

102 andNy = 154, and the simulation time was 4 weeks on a standard PC.
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Figure 17:Power spectra of the velocity, for the simulation withfS = 400 kHz, and at successive instants,
respectively:t= 2s, 4s, 6s, 8s and 10 s. Power spectra are compute with windowsof 16384 points (0.041
s), mean-valued over twelve successive windows so that 0.5 seconds of signal is used at each instant.

The simulation withfS = 400 kHz has been used so as to verify the prediction of WTT on the
power spectra of the transverse velocity, Eq. (34). As can beseen in Figure 17, a clear cascade
regime sets in with a power law off 0 being verified over more than two decades, showing the
robustness of the numerical method used. It has also been verified that the problem encountered
and discussed for the undamped case disappears as soon as oneadds damping to the simulation.
In this case, the cascade does not extend to infinity and energy is dissipated until the energy flux
attains the Nyquist frequency, provided the sampling frequency is chosen high enough.

6. Conclusion

The transition from periodic to wave turbulence regime in the forced vibrations of thin plates
has been presented. Experimental results, described in theintroduction, reveal that a generic
transition scenario can be inferred. A detailed numerical study on a simply supported plate has
been here proposed, hence completing the results presentedon free-edge circular plates in [25],
and assessing the transition scenario involving at most twobifurcations. The first one implies
a loss of stability of the directly excited mode in favour of acoupled regime where the energy
is shared between a rather small subset of internally resonant modes. The resulting motion is
generally quasiperiodic but can degenerate to periodic in case of very simple internal resonance,
e.g. 1:2 or 1:3. The second bifurcation is characterized by the loss of stabililty of this coupled
regime and the appearance of wave turbulence. This scenariomay also degenerate and simplify
to a direct transition from periodic to turbulent motions ifno simple energy exchange through
internal resonances can be activated.
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For perfect plates, direct transitions are generally observed for the first eigenmodes, whereas
the complete three-stages scenario is the most frequently observed from the 20th mode approx-
imately. This is a reflection of the fact that perfect plates can exchange energy only through
third-order internal resonance relationships that are more difficult to activate. On the other
hand, for imperfect plates displaying quadratic nonlinearity, the complete scenario has been
numerically found from the very first modes, in the line of experimental observations. The
numerical results have also revealed that internal resonance relationships may not be directly
deduced from the natural frequencies, because of the frequency shifts due to geometric nonlin-
earity for increasing energies. The observed internal resonances sometimes involved frequency
peaks being far from the linear values, so that a prediction of the involved couplings after the
first bifurcation needs to be done on the basis of a frequency-energy plot, representing the vari-
ations of the NNM frequencies with respect to the energy level. Finally, the case of a transition
involving a rapid though markedly broadening of the spectral harmonics of the excitation, has
been found for some frequencies; a case that has also been observed experimentally. The bi-
furcation shares common features with the modulation instability that could be the dynamical
phenomena at work to transite to turbulence, but a complete characterization needs further re-
search that is postponed to future work. After the second bifurcation, wave turbulence sets in;
and it has been numerically verified that power spectra of thecomputed velocity fulfills the the-
oretical predictions given by WT for von Kármán dynamicalequations for perfect undamped
plates.
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[26] G. Düring, C. Josserand, S. Rica, Weak turbulence for avibrating plate: Can one hear a
Kolmogorov spectrum?, Physical Review Letters 97 (2006) 025503.

[27] A. Boudaoud, O. Cadot, B. Odille, C. Touzé, Observation of wave turbulence in vibrating
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[41] C. Touzé, O. Thomas, A. Chaigne, Asymmetric non-linear forced vibrations of free-edge
circular plates, part I: theory, Journal of Sound and Vibration 258 (4) (2002) 649–676.

[42] M. Amabili, Nonlinear vibrations and stability of shells and plates, Cambridge University
Press, 2008.

[43] G. Ostiguy, S. Sassi, Effects of initial imperfections on dynamic behaviour of rectangular
plates, Non-linear Dynamics 3 (1992) 165–181.

[44] A. W. Leissa, Vibration of plates, Acoustical Society of America, 1993, (orig. issued
NASA SP-160, 1969).

[45] O. Thomas, S. Bilbao, Geometrically nonlinear flexuralvibrations of plates: In-plane
boundary conditions and some symmetry properties, Journalof Sound and Vibration
315 (3) (2008) 569–590.

[46] R. Lewandowski, Computational formulation for periodic vibration of geometrically non-
linear structures, part I: theoretical background, International Journal of Solids and Struc-
tures 34 (1997) 1925–1947.

[47] R. Lewandowski, Computational formulation for periodic vibration of geometrically non-
linear structures, part II: numerical strategy and examples, International Journal of Solids
and Structures 34 (1997) 1949–1964.

[48] G. Kerschen, M. Peeters, J. Golinval, A. Vakakis, Non-linear normal modes, part I: a useful
framework for the structural dynamicist, Mechanical Systems and Signal Processing 23 (1)
(2009) 170–194.
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[57] O. Cadot, C. Touzé, A. Boudaoud, Linear versus nonlinear response of a forced wave
turbulence system, Physical Review E 82 (2010) 046211.

[58] C. Cichowlas, P. Bonaı̈ti, F. Debbasch, M.-E. Brachet,Effective dissipation and turbulence
in spectrally truncated Euler flows, Physical Review Letters 95 (2005) 264502.

32


