Measurement of flow separation in a human vocal folds model

Abstract : The paper provides experimental data on flow separation from a model of the human vocal folds. Data were measured on a four times scaled physical model, where one vocal fold was fixed and the other oscillated due to fluid-structure interaction. The vocal folds were fabricated from silicone rubber and placed on elastic support in the wall of a transparent wind tunnel. A PIV system was used to visualize the flow fields immediately downstream of the glottis and to measure the velocity fields. From the visualizations, the position of the flow separation point was evaluated using a semiautomatic procedure and plotted for different airflow velocities. The separation point position was quantified relative to the orifice width separately for the left and right vocal folds to account for flow asymmetry. The results indicate that the flow separation point remains close to the narrowest cross-section during most of the vocal fold vibration cycle, but moves significantly further downstream shortly prior to and after glottal closure.
Complete list of metadatas

Cited literature [37 references]  Display  Hide  Download

https://hal-ensta-paris.archives-ouvertes.fr//hal-00838870
Contributor : Aurélien Arnoux <>
Submitted on : Thursday, May 11, 2017 - 2:07:58 PM
Last modification on : Wednesday, July 3, 2019 - 10:48:05 AM
Long-term archiving on : Saturday, August 12, 2017 - 1:22:05 PM

File

SDCC.pdf
Files produced by the author(s)

Licence


Distributed under a Creative Commons Attribution 4.0 International License

Identifiers

Collections

Citation

Petr ŠŠidlof, Olivier Doaré, Olivier Cadot, Antoine Chaigne. Measurement of flow separation in a human vocal folds model. Experiments in Fluids, Springer Verlag (Germany), 2011, 51 (1), pp.123-136. ⟨10.1007/s00348-010-1031-9⟩. ⟨hal-00838870⟩

Share

Metrics

Record views

175

Files downloads

227