%0 Journal Article %T About stability and regularization of ill-posed elliptic Cauchy problems: The case of C1,1 domains %+ Propagation des Ondes : Étude Mathématique et Simulation (POEMS) %A Bourgeois, Laurent %< avec comité de lecture %@ 0764-583X %J ESAIM: Mathematical Modelling and Numerical Analysis %I EDP Sciences %V 44 %N 4 %P 715-735 %8 2010 %D 2010 %R 10.1051/m2an/2010016 %K Carleman estimate %K distance function %K elliptic Cauchy problems %K conditional stability %K quasi-reversibility %Z Mathematics Subject Classification: 35A15; 35N25; 35R25; 35R30 %Z Mathematics [math]/Numerical Analysis [math.NA]Journal articles %X This paper is devoted to a conditional stability estimate related to the ill-posed Cauchy problems for the Laplace's equation in domains with C 1,1 boundary. It is an extension of an earlier result of [Phung, ESAIM: COCV 9 (2003) 621-635] for domains of class C∞. Our estimate is established by using a Carleman estimate near the boundary in which the exponential weight depends on the distance function to the boundary. Furthermore, we prove that this stability estimate is nearly optimal and induces a nearly optimal convergence rate for the method of quasi-reversibility introduced in [Lattès and Lions, Dunod (1967)] to solve the ill-posed Cauchy problems. © EDP Sciences, SMAI, 2010. %G English %L hal-00873056 %U https://hal-ensta-paris.archives-ouvertes.fr/hal-00873056 %~ ENSTA %~ CNRS %~ INRIA %~ INRIA-SACLAY %~ INSMI %~ INRIA_TEST %~ TESTALAIN1 %~ UMA_ENSTA %~ INRIA2 %~ TDS-MACS