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Abstract

A time-domain global modeling of a grand piano is presented. The

string model includes internal losses, stiffness and geometrical nonlinea-

rity. The hammer-string interaction is governed by a nonlinear dissi-

pative compression force. The soundboard is modeled as a dissipative

bidimensional orthotropic Reissner-Mindlin plate where the presence

of ribs and bridges is treated as local heterogeneities. The coupling

between strings and soundboard at the bridge allows the transmission

of both transverse and longitudinal waves to the soundboard. The

soundboard is coupled to the acoustic field, whereas all other parts of

the structure are supposed to be perfectly rigid. The acoustic field is

bounded artificially using perfectly matched layers (PML). The discrete

form of the equations is based on original energy preserving schemes.

Artificial decoupling is achieved, through the use of Schur complements

and Lagrange multipliers, so that each variable of the problem can be

updated separately at each time step. The capability of the model is

highlighted by series of simulations in the low, medium and high regis-

ter, and through comparisons with waveforms recorded on a Steinway

D piano. Its ability to account for phantom partials and precursors,

consecutive to string nonlinearity and inharmonicity, is particularly

emphasized.

PACS numbers: 43.75.Mn
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I. INTRODUCTION

In this paper, an extensive and global model of a piano is presented. Its aim is to re-

produce the main vibratory and acoustic phenomena involved in the generation of a piano

sound from the initial blow of the hammer against the strings to the radiation from sound-

board to the air. Compared to previous studies, the prime originality of the work is due to

the string model which takes both geometrical nonlinear effects and stiffness into account.

Other significant improvements are due to the combined modeling of the three main cou-

plings between the constitutive parts of the instrument: hammer-string, string-soundboard

and soundboard-air coupling.

Although a vast literature exists on the piano and its subsystems (strings, hammer,

soundboard, radiated field), there are only a few examples of a complete computational

model of the instrument. One noticeable exception is the work by Giordano and Jiang1

describing the modeling of a linear string coupled to soundboard and air using finite dif-

ferences. Compared to this reference, our work is based on a more accurate description of

the piano physics, and also pays more attention to the properties of the numerical schemes

used for solving the complex system of coupled equations. The strategy used here for the

piano is similar to the one developed previously by two of the authors for the guitar2 and

the timpani3. The physical model is composed of a set of equations governing the hammer-

string contact and the wave propagation in strings, soundboard and air, in the time domain.

The input parameters of the equations are linked to the geometry and material properties

of the propagation media. The equations are then discretized in time and space, in order

to allow the numerical resolution of the complete system. Original numerical schemes are

developed in order to ensure stability, sufficient accuracy and the conservation of energy. In

this respect, this strategy has a direct continuity with the work by Bilbao4.

The numerical dispersion of the schemes is maintained sufficiently small so that the

difference between real and simulated frequencies are comparable to the just noticeable

a)Electronic address: antoine.chaigne@ensta-paristech.fr
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differences of the human ear in the audible range (around 1 %). The validity of the numerical

model is assessed by careful analysis, in time and frequency, of the most significant variables

of the problem: hammer force, string, bridge and soundboard displacements (resp. velocities

or accelerations), sound pressure. In a first step, using typical values of parameters found

in the literature, the numerical results are expected to reproduce the main features of piano

sounds, at least qualitatively. In a second step, the input parameters are the results of

measurements on real pianos, and a more thorough comparison is made between real and

simulated tones.

One motivation at the origin of this study was to reproduce the effects of the geometrical

nonlinearity of piano strings both in time (precursors5, transverse-longitudinal coupling) and

frequency domain (phantom partials6). In structural dynamics, geometrical nonlinearity

refers to nonlinear effects due to large amplitude only. The constitutive stress-strain relation

is assumed to be linear. The purpose of the simulations is to get a better understanding of

these nonlinear phenomena: the aim is to exhibit quantitative links between some control

parameters (initial hammer velocity, string tension,...) and observed waveforms and spectra.

Experimental observations of string and soundboard spectra recorded on real pianos suggest,

in addition, that the string-soundboard coupling plays a crucial role in the transmission of

longitudinal string components7, and thus attempting to reproduce and understand these

effects is another challenge.

In pianos, it is well-known that the initial transients are perceptually highly signifi-

cant. One major attribute of spectral content during the attack is due to the presence of

soundboard modes excited by the string force at the bridge. The low-frequency modes,

in particular, have low damping: they are well separated and clearly recognizable on the

spectra8. An accurate model of string-soundboard coupling has the capability of accounting

for such effects. Soundboard modeling also allows to explore the effects of bridge and ribs

distribution on the produced sound.

Finally, air-soundboard coupling is a necessary step for simulating sound pressure. Be-

cause of the wideband modeling, the computation of a 3-D pressure field is highly demanding.
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High performance parallel computing was necessary here. However, the results are very valu-

able, since one can make direct auditory comparisons with real piano sounds. Simulation of

a 3-D field also yields information on directivity and sound power.

The physical model of the piano used in this work is presented in Section II. Empha-

sis is put on what we believe to be the most innovative parts of the model: the nonlinear

stiff string and its coupling with an heterogeneous orthotropic soundboard via the bridge.

Hammer-string interaction and air-soundboard coupling are also described. In Section III,

the general method used for putting the model into a discrete form is explained. The prop-

erties of the main numerical schemes retained for each constitutive part of the instrument

and the coupling conditions are given without demonstrations, with explicit references to

other papers published by the authors, that are more oriented on the mathematical and

numerical aspects of the model.

The validity of the model is evaluated in Section IV through analysis of a selection of

simulated piano notes in the low, medium and treble register, respectively. The motion of the

main elements (piano hammer, strings, bridge, soundboard, air) are analyzed alternatively

in time, space, and/or frequency domain. Because of the important effort put on the non-

linear string, the capability of the model to reproduce amplitude-dependent phenomena is

emphasized. Comparisons are also made with measurements performed on a Steinway grand

piano (D model). In these series of experiments, the motion of hammer, string, bridge and

soundboard, and the sound pressure were recorded simultaneously. This shed useful light

on the transmission and transformation of the signals from hammer to sound and, through

comparisons, on the ability of the model to account for the coupling between the constitutive

parts of the piano.

II. PRESENTATION OF THE MODEL

In the model, a number of simplifying assumptions were made:

• The purpose is not to mimic piece by piece the construction of a real instrument. The
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model is limited to a set of equations governing the nonlinear hammer-string contact,

the wave propagation in strings, the vibrations of the heterogeneous orthotropic sound-

board radiating in air, and the reciprocal coupling between strings and soundboard at

the bridge.

• The hammer is supposed to be perfectly aligned with the strings. The agraffe is

assumed to be rigidly fixed with a simply supported end condition for the strings.

Both the string-soundboard and soundboard-air couplings are supposed to be lossless.

The soundboard is considered as simply supported along its edge.

• The virtual listening room is anechoic with no obstacle except the piano itself. There-

fore, only the outgoing wave has to be calculated.

• The action of the mechanism prior to the shock of the hammer against the strings is

ignored.

• The physical parameters of hammers, strings and soundboards included in the model

are data either obtained from manufacturers or from our own measurements.

• For the damping parameters, approximate models based on experimental data are

used, as it is commonly done in structural dynamics9.

As shown in Section III, the numerical formulation of the model is based on a discrete

formulation of the global energy of the system, which ensures stability. This requires that

the continuous energy of the problem is decaying with time. An energy decaying model is

developed for each constitutive part of the instrument, and for the global model.

A. Strings

The selected string model accounts for large deformations, inducing geometrical non-

linearities, and intrinsic stiffness. These are two essential physical phenomena in piano

strings10,11. The governing equations correspond to those of a Timoshenko beam under
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axial tension. The Timoshenko model takes both shear stress and rotational inertia into

account, which cannot be neglected for thick beams when the diameter-to-length ratio in-

creases, as in the treble range of the piano. Modeling the stiffness with a Timoshenko model,

rather than with an Euler-Bernoulli model as in a previous study by Chaigne and Asken-

felt12, is motivated by both physical and numerical reasons. As shown in Fig. 13 of Section

IV, the physical dispersion predicted by the Timoshenko model shows a good agreement

with experimental data in a wider frequency range than the Euler-Bernoulli model. It also

yields an asymptotic value for the transverse wave velocity as the frequency increases, in

contrast with the Euler-Bernoulli model. This latter property is not only more satisfying

from the point of view of the physics, but it is also more tractable in the simulations. The

geometrical nonlinearities are described using a standard model13.

Let us call ρ the density of the string, A the area of its cross-section, T0 its tension at rest,

E its Young’s modulus, I its stiffness inertia coefficient, G its shear coefficient, and κ the

nondimensional Timoshenko shear coefficient. This coefficient depend on both the geometry

of the cross-section and Poisson’s ratio of the material14. We denote us(x, t) the transverse

vertical displacement, vs(x, t) the longitudinal displacement, and ϕs(x, t) the angle of the

cross-sections with the plane normal to the string (see Fig. 1). Because of shear stress, this

angle is not zero as in the Euler-Bernoulli model. It is coupled to the other components

us and vs. The space variable is x ∈ [0, L], where L is the length of the string at rest.

For the end conditions, we assume zero displacement (in both transverse and longitudinal

directions) and zero moment. These conditions are motivated by usual observations at the

agraffe (x = 0)15, and will be revisited later at point x = L when considering the coupling

with the soundboard. Finally, the string is considered at rest at the origin of time. We get

the following system (1), where S is a source term. As shown in the next paragraph, this

term is supposed to account for the action of the hammer against the strings. The model is

written:
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String motion: (1)
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∂x2
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∂x

(

ϕs −
∂us

∂x
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= 0

Boundary conditions: (2)

us(x = xb, t) = vs(x = xb, t) =
∂ϕs

∂x
(x = xb, t) = 0, for xb ∈ {0, L},

Initial conditions: (3)














us(x, t = 0) = vs(x, t = 0) = ϕs(x, t = 0) = 0,

∂us

∂t
(x, t = 0) =

∂vs
∂t

(x, t = 0) =
∂ϕs

∂t
(x, t = 0) = 0.

FIG. 1. Schematic view of the string motion with the three unknowns: flexural displacement

us(x, t), longitudinal displacement vs(x, t), shear angle ϕs(x, t).

In Eq. (1), only one transverse component (us) is involved. This is coherent with the
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string-soundboard coupling model presented in Section II-D, where it is assumed that the

motion of the bridge is vertical. Thus, for an initial vertical hammer blow, the motion of

the string has only one transverse component.

A distinction should be made in the system of Eqs. (1) between plain and wrapped

strings. For plain strings, the density ρ, cross-sectional area A, and stiffness coefficient I

refer to the parameters of the metallic wire (usually steel), without ambiguity. For wrapped

strings, A = Ac is the cross-sectional area of the core, I = Ic is the stiffness coefficient of

the core, whereas ρ = ρcF where ρc is the density of the core, and F is a wrapping factor

(see Conklin15) defined by the expression:

F = 1 +
ρwAw

ρcAc

, (4)

where Aw is the cross-sectional area of the wrapping with density ρw (usually copper). In

both cases, the other parameters E, T0, G, κ refer to the material of the wire (resp. core). It

is assumed that the wrapping affects the inertial forces only. The small increase in stiffness

due to the wrapping is neglected15.

The eigenfrequencies of the linearized system (1)-(2) can be computed analytically (see, for

example18), which yield three different series. The following expressions hold for partial’s

rank ℓ ≥ 1. The flexural eigenfrequencies are given by:

f trans
ℓ = ℓf trans

0

(

1 + ǫ ℓ2
)

+O(ℓ5), where f trans
0 =

1

2L

√

T0

ρA
, ǫ =

π2

2L2

EI

T0

[

1−
T0

EA

]

. (5)

The shear eigenfrequencies satisfy:

f shear
ℓ = f shear

0

(

1 + η ℓ2
)

+O(ℓ4), where f shear
0 =

1

2π

√

AGκ

ρI
, η =

π2

2L2

EI + IGκ

AGκ
. (6)

These shear frequencies, which are situated well above the audio range, are not perceived

by the human ear. Finally, the longitudinal eigenfrequencies read

f longi
ℓ = ℓf longi

0 , where f longi
0 =

1

2L

√

E

ρ
. (7)

Eq. (5) shows that the model accounts for inharmonicity. The inharmonicity coefficient ǫ is

slightly different from the usual coefficient obtained with the Euler-Bernoulli model19. The
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speed of waves associated to equations (5) and (7) are the transverse speed ctrans =
√

T0/ρA

and the longitudinal speed clongi =
√

E/ρ. For the string C2, for example, we obtain

ctrans = 209 m·s−1 and clongi = 2914 m·s−1. Since both types of waves are present on

the string (because of nonlinear transverse to longitudinal coupling) near the hammer

contact point, the speed ratio explains why the longitudinal waves arrive first at the bridge,

inducing a precursor.

With the objective to simulate realistic tones, it is essential to account for the observed

frequency-dependent damping on strings. A simple model is used here that globally and

approximately accounts for the damping effect, without pretending to model the underlying

physics in details20. In practice, viscoelastic-like terms are added under the form:

2 ρARu

∂us

∂t
− 2 T0 ηu

∂3us

∂t ∂x2
(8)

where Ru and ηu are empirical damping coefficients to be determined from measured sounds,

through comparisons between simulated and measured spectrograms. The resulting damping

law in the frequency domain is the sum of a constant term 2 ρARu and a quadratic term

2 T0 ηu f
2
ℓ . Similar damping terms have to be added for shear and longitudinal motions in

order to avoid unpleasant endless frequencies in the simulated tones.

2 ρARv

∂vs
∂t

− 2EAηv
∂3vs
∂t ∂x2

, 2 ρI Rϕ

∂ϕs

∂t
− 2EI ηϕ

∂3ϕs

∂t ∂x2
. (9)

Again, the order of magnitude for (Rv, Rϕ) and (ηv, ηϕ) are determined from experiments

and/or trial-and-error procedures, considering the absence of any other reliable method.

When the system is subjected to a source term S(x, t) in the transverse direction, it is
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possible to show the following energy identity21:

dEs
dt

≤

∫ L

0

S
∂us

∂t
dx where Es(t) = Es,kin(t) + Es,pot(t) (10)

Es,kin(t) =
ρA

2

∫ L

0

(
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∂t

)2

dx+
ρA

2

∫ L

0

(

∂vs
∂t

)2

dx+
ρI

2

∫ L

0

(

∂ϕs

∂t

)2

dx

Es,pot(t) =
T0

2

∫ L

0

(

∂us

∂x

)2

dx+
EA

2

∫ L

0

(

∂vs
∂x

)2

dx

+
EI

2

∫ L

0

(

∂ϕs

∂x

)2

dx+
AGκ

2

∫ L

0

(

∂us

∂x
− ϕs

)2

dx

+ (EA− T0)

∫ L

0





1

2

(

∂us

∂x

)2

+

(

1 +
∂vs
∂x

)

−

√

(

∂us

∂x

)2

+

(

1 +
∂vs
∂x

)2


 dx

This quantity is always positive in practice since, for real piano strings, we have EA > T0.

Advantage of this property will be taken in Section III to derive stable numerical schemes

for solving the nonlinear system of equations.

B. Hammer

We now turn to the interaction between the hammer and the strings. Depending on the

note, the hammer strikes one, two or three strings. The components of the motion of the ith

string’s of a given note’s set are written (us,i, vs,i, ϕs,i). Since the strings belonging to the

same note are slightly detuned22, each string has a different tension at rest T0,i in system (1).

The hammer’s center of gravity is supposed to be moving along a straight line orthogonal to

the strings at rest. Its displacement on this line is represented by ξ(t). The interaction force

between the hammer and the ith-string of a note is distributed on a small portion of the

string, through a spreading function δH (represented in Fig. 2) localized around the impact

point x0, with

∫ L

0

δH(x) dx = 1. Depending on the note, the width of the contact can be

adjusted from a few mm to nearly 2 cm. As a consequence, we denote 〈us,i〉 the weighted

average of the transverse displacement of the string:

〈us,i〉(t) =

∫ L

0

us,i(x, t) δ
H(x) dx. (11)
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FIG. 2. Spreading function δH(x) used to model the hammer string contact.

The interaction force depends on the distance d(t) between the hammer and the string: if

d(t) > ξ, there is no contact and the force is zero. If d(t) ≤ ξ, the force is a function of the

distance. According to previous studies, we define the function:

Φ(d) =
[

(

ξ − d
)+

]p

(12)

where (·)+ means “positive part of”, and where p is a real positive nonlinear exponent. In

practice, this coefficient varies between 1.5 and 3.512,23,24. In order to account further for the

observed hysteretic behavior of the felt23, a dissipative term is added in the expression of the

force. In summary, the parameters characterizing the mechanical behavior of the hammer

are its equivalent mass MH, its stiffness coefficient KH

i and its dissipation coefficient RH

i .

The index i here indicates that the model can eventually account for the fact that the

interaction with the hammer might not be uniform for each string of a note. The interacting

force between the hammer and the ith-string finally reads

FH

i (t) = KH

i Φ
(

〈us,i〉(t)− ξ(t)
)

+ RH

i

d

dt
Φ
(

〈us,i〉(t)− ξ(t)
)

. (13)

The hammer is submitted to the sum of these forces. Conversely, the right hand side S(x, t)

of the strings system (1) is replaced with FH

i (t) δH(x).

We consider an initial position −ξ0 and an initial velocity vH0 for the hammer, while the

strings are considered at rest at the origin of time. Defining further Ψ(d) =

∫ +∞

d

Φ(s) ds,

one can show (see Chabassier et al.21) that any regular solution to the resulting hammer –
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strings system satisfies the following energy decay:

dEs,h
dt

≤ 0, with Es,h(t) =
∑

i

[

Es,i(t) +KH

i Ψ
(

〈us,i〉(t)− ξ(t)
)

]

+
MH

2

(

dξ

dt
(t)

)2

≥ 0

(14)

where Es,i(t) is the energy defined in Eq. (10) for the ith string.

C. Soundboard

The only vibrating element of the piano case considered in the model is the soundboard,

all other parts (rim, keybed, lid, iron frame. . . ) being assumed to be perfectly rigid. In view

of the small “thickness over other dimensions” ratio of the piano soundboard, a bidimensional

Reissner-Mindlin plate model is considered. This model is the bidimensional equivalent

to the linear Timoshenko model in the sense that it takes the effects of shear stress into

account. It has been preferred to the Kirchhoff-Love model, because its yields a better

estimate for the soundboard motion (for the normal modes, in particular), in the complete

audio range. It also has better mathematical properties21. The variables of the motion are

the vertical transverse displacement up(x, y, t) at a current point of coordinates (x, y) of

the bidimensional plate ω, and two shear angles θx,p(x, y, t) and θy,p(x, y, t). These last two

variables account for the deviation of the straight segments of the plate from the normal to

the medium surface, in the (ex, ey)-referential plane (see Fig. 3). The vector θp(x, y, t) groups

these two angles. The bridge and ribs are considered as heterogeneities of the soundboard,

and the orientation of the orthotropy axes can be space dependent. As a consequence, the

physical coefficients representing the density ρp, the thickness δ, the Young’s moduli in the

two main directions of orthotropy Ex and Ey, the shear moduli in the three main directions

of orthotropy Gxy, Gxz and Gyz, the Poisson’s ratios νxy and νyx, and the shear coefficient

κx and κy are functions of space.

Modeling the thickness as a space dependent variable makes it possible to simulate a

diaphragmatic soundboard25 (the thickness varies between 6 and 9 mm in the soundboard,

between 9 and 35 mm on the ribs, between 29 and 69 mm on the bridge, and between
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29 and 95 mm on the crossing areas of ribs and bridge). The soundboard is assumed to

be simply supported26 on its edge ∂ω. There is general agreement in the literature that

the real boundary conditions are “somewhere between the clamped and simply supported

conditions”8. In fact, many observations show that the rim is coupled to the soundboard

and vibrates significantly, which would require a more complex model. Finally, a source

term is imposed in the transverse vertical direction. The function of this term is to account

for both the string’s tension at the bridge (see Section II.D) and the air pressure jump (see

Section II.E).

FIG. 3. Schematic view of the four different zones of the soundboard in the referential plane.

The orthotropy axis of the soundboard makes an angle of −40 degrees with the horizontal

axis (see the stripes).

For simplicity, the rotation of the orthotropy axes in the soundboard is ignored in the

presentation of the equations, although this flexibility is possible in the model. The Reissner-

Mindlin system that governs the motion of transverse displacement and shear angles is
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written for (x, y) belonging to the 2D domain ω:































ρp
δ3

12

∂2θp
∂t2

− Div

(

δ3

12
C ε(θp)

)

+ δ κ2 ·G · (∇up + θp) = 0 (15a)

ρp δ
∂2up

∂t2
− div

(

δ κ2 ·G · (∇up + θp)
)

= f (15b)

up = Cε(θp)n = 0 on ∂ω (15c)

with C ε =















Ex

1− νxyνyx
−

Eyνxy
1− νxyνyx

0

−
Exνyx

1 − νxyνyx

Ey

1− νxyνyx
0

0 0 2Gxy



























εxx

εyy

εxy













where the tensor ε is symmetric,

G =







Gxz

Gyz






, κ2 =







κ2
x

κ2
y






(16)

Here, Div is the divergence operator for tensors: Div(τ) = ∂jτi,j , ε is the linearized strain

tensor, div is the divergence operator for R2 vectors and ∇ is the gradient operator. Table I

gives the parameters used for the soundboard wood (Spruce for the table and the ribs,

Beech for the bridge). A prestress term can be added to this model, if necessary, account-

ing for the static action of the strings (or downbearing) on the curved soundboard (or crown).

With regard to the modeling of damping in the soundboard material, a modal approach

has been adopted where the modal damping can be adjusted, mode by mode. This method

is justified as long as the damping factor is small compared to the eigenfrequency, and is

of current use in structural dynamics27. The modal amplitudes Xn(t) of the nth mode

associated to the frequency fn are then solution of the second-order uncoupled damped

oscillators equations:

d2Xn

dt2
+ α(fn)

dXn

dt
+ (2πfn)

2Xn = Fn (17)

where α is a positive damping function matching experimental data28, and Fn is the modal

contribution of the transversal source term f .
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For any positive damping law it is possible to show the following energy identity:

dEp
dt

≤

∫ ∫

ω

f
∂up

∂t
dx dy where Ep(t) = Ep,kin(t) + Ep,pot(t) (18)

Ep,kin(t) =

∫ ∫

ω

ρp δ

(

∂up

∂t

)2

dx dy +

∫ ∫

ω

ρp
δ3

12

∣

∣

∣

∣

∂θp
∂t

∣

∣

∣

∣

2

dx dy

Ep,pot(t) =

∫ ∫

ω

δ3

12
C ε(θp) : ε(θp) dx dy +

∫ ∫

ω

δ κ2 ·G |∇up + θp|
2dx dy

Thus, like for the strings-hammer system, we can conclude that the energy of the soundboard

decays with time, after extinction of the source.

D. Strings-soundboard coupling at the bridge

As highlighted by the spectral content of the precursor signal29, it is essential to model

the transmission of both transverse and longitudinal waves of the string to the other parts of

the structure. The literature is not very broad concerning this part of the instrument, with

a few exceptions7,30. A plausible, though not fully proved, way for transforming the string

longitudinal component into a bridge transverse motion is presented here. The method is

based on the observation that the strings form a slight angle α with the horizontal plane

due to both bridge height and soundboard curvature (see Fig. 4-(a)). On both sides of the

bridge, the static tension of the string is comparable, and thus the global torque is zero. Due

do the angle α a vertical force component is transmitted to the soundboard. If the duplex

scales are not damped, then a similar force is transmitted on both sides. Another possible

approach to transmit the string’s longitudinal motion to the soundboard would be to allow

a rocking motion of the bridge7. Since we were unable to measure such features convincingly

enough, this solution was not retained. It would be probably also necessary in the future to

revisit the assumption of ignoring the horizontal bridge motion perpendicular to the strings,

that might induce an horizontal component to the string motion. When the hammer strikes

the strings, it gives rise to a transversal wave which, in turn, induces a longitudinal wave,

because of nonlinear geometrical coupling. The longitudinal wave travels 10 to 20 times

faster than the transverse one, and thus it comes first at the bridge (see Section II). In our
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FIG. 4. (a) Schematic view of strings-soundboard coupling at the bridge. The soundboard is

flat because of the static action of the strings. The bridge is supposed to move in the vertical

direction ν only. The string forms a small angle α with the horizontal plane containing the

vector τ . (b) The spot indicates the spreading function χω for note C2, centered on the

point where the string passes over the bridge.

numerical model, the total bridge force is distributed in space in the soundboard by means

of a rapidly decreasing regular function χω centered on the point where the string is attached

on the soundboard (see Fig. 4-(b)). The associated kinematic boundary conditions are the

continuity of string and soundboard velocities in the vertical direction ν, and the nullity of

the velocity in the horizontal direction τ at this point (see Fig. 4(a)). These conditions are

written formally:









∂us,i

∂t
(x = L)

∂vs,i
∂t

(x = L)









· ν =

∫

ω

∂up

∂t
χω,









∂us,i

∂t
(x = L)

∂vs,i
∂t

(x = L)









· τ = 0. (19)

In addition, the source term in the system of Eqs. (15)-(a) to (15)-(c) is given by f =

−Fb(t)χω(x, y), where Fb(t) is the bridge force associated to the cinematic conditions written

in Eq. (19). Ignoring the damping terms, and considering only one string for simplicity, this
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force is written:

Fb(t) = cos(α)

[

EA∂xus + AGκ
(

∂xus − ϕs

)

− (EA− T0)
∂xus

√

(∂xus)2 + (1 + ∂xvs)2

]

(x = L, t)

+ sin(α)

[

EA∂xvs + (EA− T0)
(

1−
1 + ∂xvs

√

(∂xus)2 + (1 + ∂xvs)2
)

]

(x = L, t) (20)

If the magnitude of the transverse motion remains small enough, it becomes justified under

some conditions to derive approximate string models using an asymptotic approach31. Such

models were used in the past by different authors for analytical32 or numerical4 purposes.

In our case, we will not use this approximate system for the modeling of the piano, and the

mathematical reasons for this choice were given explicitely in a previous paper33. However,

interesting properties can be derived from the approximate expression of the bridge force:

Fb(t) ≈ cos(α)
[

T0 ∂xus + AGκ
(

∂xus − ϕc

)

+(EA− T0)∂xus ∂xvs + (EA− T0)
(∂xus)

3

2

]

(x = L, t)

+ sin(α)

[

EA∂xvs + (EA− T0)
(∂xus)

2

2

]

(x = L, t). (21)

From Eq. (21), it can be derived that the quadratic and cubic terms in us generate double

and triple combinations of the transverse eigenfrequencies32. Combination of longitudinal

and transverse eigenfrequencies can also exist potentially, through the product usvs. All

these combinations correspond to the so-called “phantom” partials.

E. Sound propagation and structural acoustics

We are now interested in the propagation of piano sounds in free space. The rim (occu-

pying the space Ωr) is considered to be a rigid obstacle (see Fig. 5). The acoustic velocity

V a and the acoustic pressure P are solutions of the linearized Euler equations with ve-

locity ca = 340 m/s, density ρa = 1.29 kg/m3 and adiabatic compressibility coefficient

µa = 1/(ρac
2
a), in the unbounded domain Ω = R

3 \ {ω ∪ Ωr} which excludes the rim and the
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plate:


















ρa
∂V a

∂t
+∇P = 0

µa

∂P

∂t
+Div V a = 0

in Ω (22)

Viscothermal losses in the air are ignored in the acoustic model. The normal component of

the acoustic velocity vanishes on the rim:

V a · nr = 0 on Ωr (23)

FIG. 5. Geometrical configuration of the piano. (Color online)

The coupling between the 3D sound field in Ω and the vibrating soundboard in ω obeys

to the condition of continuity of the velocity normal components:

V a · ez =
∂up

∂t
on ω (24)

where ez completes the referential (ex, ey) introduced for the describing the motion of the

soundboard in ω ⊂ R
2 (see Fig. 5). Finally, the soundboard force f is the pressure jump:

[P ]ω = P |ω− − P |ω+ (25)

where ω+ and ω− stand for the both sides the plate. Again, the vibroacoustic system satisfies

the following energy decay:

dEp,a
dt

≤ 0 with Ep,a(t) = Ep(t) + Ea(t) (26)
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where Ep(t) was defined in Eq. (18), and

Ea(t) =

∫ ∫ ∫

Ω

ρa
2
|V a|

2 dx dy dz +

∫ ∫ ∫

Ω

µa

2
P 2 dx dy dz. (27)

F. Piano model

In the complete piano model, the soundboard is coupled to the hammer-strings sys-

tem, according to the description made in Section II.D, and radiates in free space (see

Section II.E). Consequently, the force f in the system of equations (15) becomes:

f = −
∑

i

Fb,i(t) χω + [P ]ω . (28)

At the origin of time, the hammer has an initial velocity, while all the other parts of the

system are at rest. The global coupled system satisfies the energy decay property:

dEh,s,p,a
dt

≤ 0 with Eh,s,p,a(t) = Eh,s(t) + Ep(t) + Ea(t), (29)

where Eh,s(t) is defined in Eq. (14), Ep(t) is defined in Eq. (18), and Ea(t) is defined in

Eq. (27). In our model, it is assumed that there is no dissipation in the strings – soundboard

and soundboard – air coupling terms. In other words, all dissipative terms are intrinsic to the

constitutive elements (hammer, strings, soundboard). The acoustic dissipation is consecutive

to the radiation in free space, which corresponds to energy loss for the “piano” system.

III. NUMERICAL FORMULATION

We now turn to the discretization of the global piano model described in the previous

sections. We have to solve a complex system of coupled equations, where each subsystem

has different spatial dimensions, inducing specific difficulties. The hammer-strings part is a

1D system governed by nonlinear equations. The soundboard is a 2D system with diagonal

damping, which means that the modes are not coupled by the damping terms. The acoustic

field is a 3D problem in an unbounded domain.

The nonlinear parts of the problem (hammer-strings interaction, string vibrations), the

coupling between the subsystems and, more generally, the size of the problem in terms of
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computational burden, requires to guarantee long-term numerical stability. In the context

of wave equations, and in musical acoustics particularly2,3, a classical and efficient technique

to achieve this goal is to design numerical schemes based on the formulation of a discrete

energy which is either constant or decreasing with time. This discrete energy has to be

consistent with the continuous energy of the physical system. For most numerical schemes

this imposes a restriction on the discretization parameters, expressed, for example, as an

upper bound for the time step.

Another innovative aspect of our method is that the reciprocity and conservative nature

of the coupling terms are guaranteed. In the discrete formulation, the couplings need a

specific handling in order to guarantee a simple energy transfer without artificial introduction

of dissipation, and without instabilities. Our choice here is to consider discrete coupling

terms that cancel each other when computing the complete energy. In total, this method

yields centered implicit couplings between the unknowns of the subsystems. The order

of accuracy of the method is preserved, compared to the order of each subsystem taken

independently, with no additional stability condition.

In view of the diversity of the various problems encountered in the full piano model,

different discretization methods are chosen for each subsystem and for the coupling terms.

The complete piano model is written in a variational form. In summary:

• Higher-order finite elements in space, and an innovative nonlinear three-points time

discretization are used on the string,

• A centered nonlinear three time steps formulation is used for the hammer-strings

coupling,

• A modal decomposition, followed by a semi-analytic time resolution is used for the

soundboard,

• A centered formulation is used for the strings-soundboard coupling, where the forces

acting at the bridge are introduced as additional unknowns,
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• For the acoustic propagation, higher-order finite elements are used in the artificially

truncated space, coupled to Perfectly Matched Layers (PML) at the boundaries, with

an explicit time discretization.

The numerical schemes used are not presented in detail below. We restrict the presentation

to some general survey on the numerical resolution and on its main difficulties. References

are given to more numerically-oriented papers where a rigorous presentation of the method

is given.

A. Strings

Standard higher-order finite elements are used for the space discretization of the non-

linear system of equations that govern the vibrations of the strings. The spatial discretization

parameters (mesh size and polynomial order) are selected to ensure a small numerical dis-

persion in the audio range. The unknowns are then evaluated on a regular time grid so that

u(n∆t) ≈ un
h, v(n∆t) ≈ vnh and ϕ(n∆t) ≈ ϕn

h.

The most popular conservative schemes for wave equations are the family of θ-schemes,

which have two drawbacks in the context of the piano strings: firstly, they were designed for

linear equations, and, secondly, the less dispersive schemes in this family are subject to a

restrictive stability condition that yields an upper bound for the time step (the so-called CFL

condition). Therefore, it has been decided to adopt two different discretization schemes for

the linear and the nonlinear part of the system, respectively. In addition, an improvement

of the θ-scheme is developed for the linear part that combines both stability and accuracy.

For the nonlinear part, one major difficulty is that no existing standard scheme has the

capability to preserve a discrete energy. As a consequence, we had to develop new schemes33

based on the expression of a discrete gradient, which ensures the conservation of an energy,

for a special class of equations called “Hamiltonian systems of wave equation”. We have

shown theoretically that no explicit scheme could ensure energy conservation, and the final

numerical scheme is nonlinearly implicit in time (which implies that a nonlinear system
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must be solved at each time iteration). For a scalar equation, for example, the scheme

would simply treat a continuous derivative term H ′(u) as a derivative quotient based on the

evaluation of the solution at successive time steps:

H ′(u(n∆t)) ≈
H(un+1

h )−H(un−1
h )

un+1
h − un−1

h

(30)

The case of a system of equations involves the gradient ∇H(u, v, ϕ) for which new methods

have been developped since the trivial generalisation of Eq. (30) does not lead to an energy

preserving discretisation.

In the linearized part of the string system, transverse, longitudinal and shear waves

coexist. In the piano case, the transverse waves propagate much slower than the two others.

In the audio range, and for the 88 notes of the instrument, small numerical dispersion must

be guaranteed for the series of transverse partials and for the lowest longitudinal components.

The shear components are beyond the audio range, and thus numerical schemes inducing

higher dispersion for this series are acceptable.

In view of these considerations, a novel implicit discretization has been elaborated that

reduces the numerical dispersion while allowing the use of a large time step in the numerical

computations18. This method is based on the classical second-order time derivative centered

scheme combined to the three points centered θ-approximation:














∂2u

∂t2
(n∆t) ≈

un+1
h − 2un

h + un−1
h

∆t2

u(n∆t) ≈ θ un+1
h + (1− 2θ) un

h + θ un−1
h

(31)

where θ ∈ (0, 1/2). For θ ≥ 1/4, the numerical scheme is unconditionally stable, while for

θ < 1/4 the time step ∆t must satisfy the relation

∆t2 ≤
4

(1− 4θ) ρ (Kh)
(32)

where ρ (Kh) is the spectral radius of the stiffness matrix. When finite differences are used

for space discretisation of a wave equation with velocity c, with a mesh size h, this relation

simplifies to

c2∆t2

h2
≤

1

1− 4θ
. (33)
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A classical analysis shows that the value θ = 1/12 minimizes the numerical dispersion, but

choosing this value for the whole system would yield a too severe time step restriction,

due to the two fastest waves. We propose a scheme where the value θ = 1/4 is used for

the longitudinal and shear waves, hence relaxing the stability condition, while the value

θ = 1/12 is used for the transverse wave, hence reducing the numerical dispersion for the

series of transverse partials (see Fig. 6). The implicit nature of the resulting scheme might be

a drawback in other contexts, but is not penalizing here since an implicit scheme is already

necessary for the nonlinear part of the system.

FIG. 6. Spectrum of the transverse displacement of string D♯1 when considering the lin-

ear Timoshenko model. Parameters are listed in Table II. Solid line: spectrum obtained

from numerical simulation. Circles: theoretical spectrum of the numerical simulations. Dia-

monds: theoretical spectrum of the continuous system. (Top) Usual θ-scheme, with θ = 1/4.

(Bottom) New scheme with θ = 1/4, θ = 1/12.
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The solution is computed via an iterative modified Newton-Raphson method which needs

the evaluation of both the scheme and its Jacobian with respect to the unknowns. It can be

shown that a discrete energy is decaying, after extinction of the source. The stability of the

numerical scheme is derived from this property, yielding a condition on the time step. In

practice, for typical space discretization parameters, the time step ∆t = 10−6 s yields stable

and satisfying results in terms of dispersion.

B. Hammer-strings coupling

The hammer-strings system is solved by considering together the unknowns of each

strings of a given note, and the hammer displacement ξnh ≈ ξ(n∆t). The nonlinear hammer-

strings interacting force is treated in a centered conservative way, following the method used

for the strings system (the function Φ in Eq. (13) is seen as a derivative quotient of its

primitive function −Ψ governed by Eq. (30)). A global discrete energy is shown to be

decaying with respect to time when the hammer is given with an initial velocity.

C. Soundboard

The soundboard model assumes a diagonal damping in the modal basis. Its motion is

first decomposed onto the modes of the undamped Reissner–Mindlin plate (see Eqs. (15))

belonging to the audio range, after semi-discretization in space with higher-order finite

elements2. In practice, 2 400 modes are needed to model the soundboard vibrations up

to 10 kHz. Fig. 7 shows some of the numerically computed modes associated to their

eigenfrequencies. The presence of ribs and bridges is visible in the high frequency range.

These modes are only computed once for all, before the time computation starts.

The choice of a Reissner-Mindlin model for the plate is validated numerically by com-

parison with measurements on rectangular plates made by other authors34 (see Fig. 8). The

discrete modal amplitudes Xh,n(t) of the discrete eigenmodes are solutions of the uncoupled
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FIG. 7. Examples of soundboard eigenmodes, computed with fourth-order finite elements

(nearly 450 000 degrees of freedom). Coordinates are in m. (Color online)

second-order equations:

d2Xh,n

dt2
+ (2πfh,n)

2Xh,n = Fh,n

where the fh,n are the numerically computed eigenfrequencies of the undamped Reissner–

Mindlin model. We then introduce a discrete damping mode per mode:

d2Xh,n

dt2
+ α(fh,n)

dXh,n

dt
+ (2πfh,n)

2Xh,n = Fh,n (34)

This procedure yields decoupled equations which can be solved analytically in time, without

introducing any additional approximation or numerical dispersion2. The energy identity

over time of this semi-discrete problem is also exactly satisfied with this method. However,

one drawback of this choice is the loss of the local nature of the coupling with strings and
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air.

FIG. 8. Simulated and measured eigenfrequencies obtained for rectangular isotropic (left)

and orthotropic (right) plates. The simulated results are obtained for three boundary con-

ditions: Dirichlet (circles), Neumann (squares) and simply supported (triangles) conditions.

The experiments were done on plates suspended by Nylon threads, and the results fit very

well with the simulations using Neumann (free) boundary conditions. As expected, the

eigenfrequencies increase as the fixing conditions become stronger.

D. Strings-soundboard coupling at the bridge

The discrete formulation of the strings-soundboard continuity equations must be done

with special care in order to ensure the stability of the resulting coupled scheme. The

purpose here is to couple the implicit three points nonlinear strings scheme described in

Section III.A with the time semi-analytic soundboard model described in Section III.C. In

practice, the last point of the string has to fulfil a discrete condition consistent with the

continuity condition expressed in Eq. (19).

For computational efficiency reasons, new variables are introduced that represent the

coupling forces associated to the cinematic conditions between string and soundboard ex-

pressed in Eq. (19) (see Fig. 4). The strings and soundboard unknowns are evaluated
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on interleaved time grids: {n∆t} for the strings, and {(n+ 1/2)∆t} for the sound-

board. The forces at the bridge are considered constant on time intervals of the form

[(n− 1/2)∆t, (n+ 1/2)∆t]. The coupling condition is an implicit version of Eq. (19) cen-

tered on times n∆t (see Fig. 9).

Due to the linearity of the soundboard model, it is possible to express the soundboard

unknowns as linear functions of the forces at the bridge. Taking advantage of this property,

it is possible to perform Schur complements16 on the system which, originally, is globally

implicit. An algorithm is then written which updates first the unknowns of the strings and

the forces at the bridge, and, in a second step, updates the unknowns of the soundboard.

E. Acoustic propagation and structural acoustics

The acoustic domain being unbounded, it is necessary to artificially truncate the compu-

tational domain, while minimizing the wave reflection on this artificial boundary. Perfectly

Matched Layers is an option17. In this technique, an absorbing layer of finite thickness is

added at the boundary of the domain, like in a real anechoic chamber. As a result, artificial

dissipative terms are added in the partial differential equations. These terms are chosen in

such a way that the solution converges to the original problem in the unbounded domain,

while minimizing spurious reflections. Even after this truncation, the numerical parameters

need to be chosen small enough, in view of the necessary wideband computation. A com-

monly accepted rule is to provide at least 10 points per wavelength so that the signal is

spatially well sampled by the discretization. For example, if one has to model the propaga-

tion of an acoustic wave with noticeable energy content up to 10 kHz, with a corresponding

smallest wavelength of 3.4 cm, one has to provide a mesh composed of 3 mm large elements.

Since the size of a piano can be 2 m large and 3 m long, with a 40 cm rim, the mesh reaches 60

millions of degrees of freedom. The acoustical problem is solved in space with higher-order

finite elements, and in time with an explicit leapfrog scheme, in view of the large number

of degrees of freedom to consider. The acoustic velocity V a,h and sound pressure Ph are
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FIG. 9. Schematic view of the discretization. The string’s variables (uh, vh, ϕh) are evaluated

on the time grid n ∆t. The soundboard modal displacements Xh,p are calculated at times

(n+1/2) ∆t. The acoustic velocity Va,h is calculated at times n ∆t and the acoustic pressure

Ph is calculated at times (n+ 1/2) ∆t. All methods used yield energy identities, where the

energies are centered on times (n+ 1/2) ∆t. The coupling terms representing the forces at

the bridge are centered on times n ∆t. (Color online)

calculated at times {n∆t} and {(n + 1/2)∆t}, respectively. This scheme has a restrictive

stability condition: in practice, the adopted time step is around 10−6 s. An implicit coupling

exists between the soundboard displacement and the acoustic pressure in the vicinity of the

plate, which implies a change of basis between both the physical and modal representations

of the soundboard. In the variational formulation, the coupling between soundboard and

air appears as skew–symmetric source terms for the soundboard and the sound pressure

29



equations, respectively. These terms are constructed in the discrete scheme so that they

vanish when computing the energy, and centered at times n∆t. Due to the linearity of the

equations, it is possible here to perform Schur complements, yielding an efficient algorithm

that updates separately the plate (with a semi-analytic method) and the air variables.

F. A virtual piano

The resulting numerical scheme is stable, under the previously mentioned conditions on

the numerical parameters, globally implicit, nonlocal for the soundboard, and uses multi-

farious methods. The efficiency of the computer code is optimized through the use of adapted

additional unknowns and Schur complements, so that the update of the unknowns of each

subsystem is made separately at each time step. A massively parallel computing was neces-

sary, and special attention was paid to the cost of each step, in order to minimize the global

computation time. In average, computing one second of sound for the complete piano model

(with frequency content up to 10 kHz) takes 24 hours on a 300 cpus cluster (around 86 ms

per time iteration for the complete piano).

In Fig. 10 the time evolution of selected quantities are represented for the note C2.

Nearly 3 000 degrees of freedom (dofs) are used on each string of the triplet, 420 000 dofs

are used to compute the 2400 first modes of the soundboard, and slightly more than 9 107

dofs are used in the air domain. The time step is 10−6 second. The parameters are listed in

Table I for the soundboard and in Table III for the strings. The hammer strikes the strings

with a velocity of 4.5 m·s−1 (a forte to fortissimo playing). The longitudinal precursor

can be seen on the upper parts of the figure: when the longitudinal wave of the string

reaches the bridge, the soundboard is pushed down (see Fig. 10(b)), until the transverse

wave arrives and pulls the soundboard up (see Fig. 10(g)). The acoustic wave is absorbed

by the PML (not represented in the figures), and the rim is an obstacle to sound propagation

(see Fig. 10(h)). Fig. 11 shows the energy evolution of each subsystem versus time, both in

linear and logarithmic scales. The energy associated to sound propagation is computed in
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FIG. 10. Time evolution of some variables of the piano model for string C2. The transverse

displacement of the string is represented in the upper parts of the figures, while the longi-

tudinal displacement is shown through shading in the string thickness (upper scale). The

displacement of the soundboard is shown in the lower parts, while the pressure is shown

in two vertical planes which cross at the point where the string is attached to the bridge:

x = 0.59 m and y = 1.26 m. The lower scale is related to the sound pressure. The scale of

the soundboard’s displacement is adjusted over time in order to see the evolution of waves

clearly. (a) t = 0.4 ms. (b) t = 1.1 ms. (c) t = 2.1 ms. (d) t = 3.1 ms. (e) t = 4.1 ms. (f)

t = 5.1 ms. (g) t = 7.1 ms. (h) t = 8.1 ms. (i) t = 16.1 ms. (Color online)
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the truncated domain only. The total energy (solid line) is decreasing, as expected.

FIG. 11. Energy vs time for note C2 (three strings). Solid line: Total energy. [- -] Hammer.

[- ·] Strings. [· · ·] Soundboard. [Thick -] Air. Left: Linear scale. Right: Logarithmic scale.

IV. RESULTS OF THE SIMULATIONS

In order to show the ability of the method to simulate the complete register of a piano,

the results (output data) of the model are presented and discussed in this Section for different

notes in the low (D♯1 and C2), medium (F3) and treble (C♯5 and G6) register, respectively.

Table III gives the numerical values used for these notes in the simulations. Since the

nonlinear string is one major feature of the model, particular attention is paid to the influence

of string amplitude on the resulting sound. The amplitude of transverse string motion is

linked to the impact velocity of the hammer. The string amplitudes of the simulated tones,

normalized with respect to string diameter, and the associated hammer impact velocities

are shown in Table IV. Comparisons with real tones allows to group the simulations into

typical categories of playing: piano, mezzo-forte, forte, fortissimo, corresponding to realistic,

though relatively arbitrary, hammer velocity ranges35.

As a rule of thumb, it is generally admitted that, for thin structures, nonlinear effects

become apparent when the amplitude of the vibrations are comparable to the thickness36.

Transposing this rule to the case of strings yields the condition ADR =
|us|

ds
> 1, where ds
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is the diameter of the string. According to this rule, Table IV predicts that nonlinear effects

should be noticeable in the bass and medium ranges, even for moderate hammer velocity,

whereas they should be less easily detectable for the treble notes, except for strong impacts.

This simple criterion is in accordance with experimental observations.

The order of the presentation follows the course of energy transmission in the piano:

from hammer to strings, from bridge to soundboard, and from soundboard to air. The input

parameter is the initial velocity of the hammer at the time where it comes in contact with

the strings. The present model ignores the action of key mechanism prior to this contact.

To illustrate this, Fig. 12 shows measured and simulated starting transients for the note

D♯1. One can see the successive transformations of the hammer pulse to string wave, bridge

and soundboard accelerations, and sound pressure. The hammer pulse is well reproduced in

shape and duration. Additional small oscillations detectable on the experiments are likely to

be due to the vibrations of the hammer shank which were not included in the present version

of the model. The simulated string displacement also matches the measurements convinc-

ingly. For the three other signals (bridge and soundboard accelerations, sound pressure) one

can see that the general shape of the simulations is very similar to the measurements. In

particular, one can easily notice the presence of precursors and the main pulses. However,

this comparison must be complemented by spectral analysis to really validate the method.

A survey of such analysis is given in what follows for this note, and for other notes in the

medium and treble register.

An essential requirement for piano tone modeling is the accuracy of frequency estimation.

To illustrate this feature, Fig. 13 shows an example of string inharmonicity for the note D♯1

(7th string with fundamental 39 Hz). Both measured and simulated string’s eigenfrequencies

follow the stiffness dispersion curve predicted by the Timoshenko model, at least up to the

60th partial (around 3 kHz). Precise measurements on partials of lower amplitude are

difficult beyond this limit, because of noise and blurred spectral content.

One effect of string nonlinearity is the dependence of frequency with amplitude. For the

note C♯5 played forte, for example, Fig. 14 shows that the frequency of the fundamental
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FIG. 12. Measured (left) and simulated (right) starting transients of the main variables for

note D♯1 (7th). From top to bottom: hammer acceleration, string displacement (at point

located 1.749 m from the agraffe), bridge acceleration at string end, soundboard acceleration

(at point x=0.17 m ; y=1.49 m in the coordinate axes shown in Fig. 3), sound pressure

(simulated at point x=0.8500 ; y=1.4590 ; z=0.3800, and measured in the nearfield at a

comparable location).

decreases with time, a consequence of amplitude decrease due to damping.

Observations made on real signals show that the pressure and soundboard motion spec-

tra, including the bridge, have a denser and richer content than the strings. The simulations

help here to understand these differences and identify the additional spectral components.

In the low-frequency range, most of the additional spectral peaks correspond to soundboard

modes excited by the string pulse. They are present in piano sounds even for light touch.

These modes are particularly visible for the upper notes of the instrument, because of large

spacing between the strings’ partials (see Fig. 15). The soundboard modes are damped more
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FIG. 13. Inharmonicity derived from frequency analysis of simulated (black circles) and

measured (squares) string spectra. Note D♯1.

rapidly than the string’s partials, and thus they are audible during the initial transients of

the tones.

Increasing the hammer velocity progressively induces additional peaks between the string

components, a consequence of string nonlinearity and coupling at the bridge. As explained

in Section II, a coupling exists between transverse and longitudinal motion of the nonlinear

string. Due to string-bridge coupling, both the transverse and longitudinal components are

transmitted to the soundboard. This explains why the longitudinal eigenfrequencies of the

strings are visible on bridge and soundboard waveforms, but not on the transverse string

motion7. In addition, a consequence of the nonlinear terms in the string wave equation is

that combinations of string components are created: the so-called “phantom partials”6.

As explained theoretically from Eq. 21 in Section II, the frequencies of these phantoms

correspond to sums (or differences) between two or three of the string components, depend-

ing on whether the combinations are the results of quadratic, or cubic, nonlinearities. In

general all combinations are not observable, and obey to complex rules. The instability

conditions that gives rise to these components must reach a certain threshold36. Similar
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FIG. 15. Comparison between simulated (left) and measured (right) G6 pressure spectrum,

below the fundamental (1571 Hz), showing a large density of soundboard modes. Right scale

in dB. (Color online)

phenomena are observed in gongs and cymbals37. Such an analysis is beyond the scope of

this paper. Notice in Fig. 16 that the frequencies predicted by sums or differences of partials’

eigenfrequencies correspond with great accuracy (less than 1 Hz) to the observed phantoms,

both in simulations and measurements.

One further interest of simulations lies in the possibility of separating phenomena that
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FIG. 16. (Top) Comparison between simulated (left) and measured (right) F3 spectrum

near the 17th partial (3.05 kHz), showing the presence of phantom partials between 2.99

and 3.0 kHz. (Bottom) Accurate measurements of the phantom frequencies around 2994

Hz for the simulated F3 tone (circles). Comparison with sums (diamonds) and differences

(squares) of the frequencies of strings’ partials.

are mixed together in the reality. In this respect, damping factors of the partials are good

illustrating examples. When systems are coupled, it is always problematic to separate the

causes of losses. In contrast, a model has the capability of introducing dissipation of energy

in the hammer felt, along the string, and at the ends, separately. Even more interesting is

the separation of structural and radiation losses. Experimentally, such a separation would

require a rather delicate procedure where the instrument should to be put in a vacuum

chamber in order to modify the conditions of radiation. One known difficulty of such experi-
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FIG. 17. Damping factors of the partials due to radiation (squares), radiation and sound-

board losses (circles), radiation, soundboard and string losses (triangles), and for all causes

of losses (diamonds). Simulations of note C♯5.

ments follows from the modifications of wood properties consecutive to variations of ambient

pressure, and thus investigating such a problem with the help of simulations is an appealing

alternative. To illustrate this ability of the model, Fig. 17 shows the damping factors derived

from simulations for the C♯5 note, introducing each cause of losses successively (radiation,

soundboard, strings, hammer felt). These damping factors are averaged in the frequency

band of each partial, during the first second of the simulated tones. The damping factor

related to the 17th partial (around 7 kHz) is ignored, since its amplitude is very low due to

the striking position. In this example, the influence of the soundboard seems to be weak.

For some partials, it turns also paradoxically out that the mean damping factors is less in

the presence of both soundboard losses and radiation than for radiation only. In fact, it

might be plausible that the conditions of coupling between strings and soundboard modes

are slightly modified by the damping due to eigenfrequency shift. As a consequence, a “lo-

cal” measure of damping might exhibit unexpected results. More investigation is needed

here based, for example, on the computation of sound power and radiation efficiency.
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V. CONCLUSION

In this paper, a global model of a grand piano has been presented. This model couples

together the hammer, the nonlinear strings, the soundboard with ribs and bridges, and the

radiation of acoustic waves in free field. As far as we are aware, this is probably the most

general physical model of a piano available today. However, a number of significant features

of real pianos were not considered in this model. The key mechanism, the dampers, and an

accurate description of the hammer action including the vibrations of the hammer shank,

have been left aside.

Beside this, an improvement in the string model would be to account for the nonplanar

motion observed on real pianos. A strong hypothesis is that this motion might be due

together to the customary observed zig-zag clamping conditions at the bridge38 and to the

rocking motion of the bridge, but this needs to be verified and quantified by measurements.

To reproduce such effects, more appropriate boundary conditions have to be developed, that

allow the progressive transformation of a vertical polarization into an horizontal motion. The

coexistence of these polarizations with different decay times greatly influence the amplitude

envelope of the tone, and thus its perception.

The motion of the structure is restricted here to the soundboard. Previous measurements

tend to show that some other parts of the instrument contribute to the sound5. In this

context, it would be attractive to reproduce the shock of the key against the keybed and

the vibrations of the rim, to evaluate their relevance.

The present model is solved in the time-domain. The results yield the temporal evolution

of the main significant variables of the system simultaneously: hammer force, string motion,

bridge and soundboard vibrations, pressure field. The obtained waveforms can be heard

through headphones or loudspeakers, and clearly evoke piano tones39. They also shed useful

light on the transfer of energy and transformations of the signals from hammer to strings,

soundboard and air. Since the radiation is simulated in a virtual anechoic room, a better

realism of the sounds should be obtained with artificial reverberation or convolution with
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room impulses.

To numerically solve the problem, specific and original methods were developed for each

part of the piano. A gradient approach coupled to higher-order finite elements lead us to

design an energy decaying numerical scheme for the string’s system. A modal method was

chosen to solve the soundboard problem, with a diagonal damping form. The eigenmodes

and eigenfrequencies are computed once for all using higher-order finite elements, and an

analytic formula is then used in time. Finally, sound radiation is solved with finite differences

in time and higher-order finite elements in the space domain, which is artificially truncated

with PML (Perfectly Matched Layers).

As a result, a numerical formulation of the global piano model is obtained with high

precision in time, space and frequency. This formulation ensures that the total energy of the

system is decaying. The model accounts for the dependence of piano sounds and vibrations

with amplitude, due to nonlinear modeling of strings and hammers. In this respect, the

simulations show the main effects of nonlinearity observed on real tones: precursors, time

evolution of eigenfrequencies, transverse-longitudinal coupling, and phantom partials. The

model used for string-soundboard coupling at the bridge is consistent with the transmission

of nonlinearities observed on real instruments. Due to this coupling, the presence of the

soundboard modes in the piano transients are reproduced in a natural way. The soundboard

model also integrates the presence of ribs and bridges, which are treated as heterogeneities

in material and thickness of a Reissner-Mindlin plate.

The piano is a instrument with a large register. Most of the notes, from bass to treble,

show a wideband spectrum, with significant energy up to 10 kHz and more. As a conse-

quence, piano modeling requires a fine spatial grid for each part. The most demanding grid

is associated with the modeling of the pressure field. For this part of the simulations high

performance parallel computing was required. In the present state of the equipment, several

hours of computation in parallel on a 300 cpus cluster are necessary to compute the pressure

field during one second in the 10 m3 box that contains the instrument40.

Analysis of the simulated piano tones in time and frequency show a satisfactory agree-
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ment with measurements performed on a Steinway D grand piano. This particular instru-

ment was used for extracting accurate values of input parameters, thus allowing precise

comparisons between model and measurements for some selected notes in the bass, medium

and treble range. Informal auditory evaluation of the simulated tones indicates that medium

and treble notes are fairly well reproduced, but that the depth of the bass notes is not com-

pletely rendered.

In its present state, this model of piano should be considered as a crude skeleton of

the instrument. Its prime function is to get a better understanding of the complex coupled

phenomena involved in a complete piano, with the possibility of systematic variations of

making parameters. Numerous additional improvements, careful adjustments and fine tun-

ing would be necessary before thinking of competing with high-quality pianos. However,

even in its imperfect form, we believe that the model could be used as a companion tool for

piano making. In this context, investigating the influence of soundboard modifications on

the radiation of sound and on string-bridge coupling appear as potentially fruitful examples.
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Application à la synthèse sonore (Time-domain modeling for the numerical simulation

of vibrating plates. Application to sound synthesis.)”, Ph.D. thesis, Université du Maine
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TABLE I. Parameters used for the wooden soundboard: Spruce for the table and the ribs,

Beech for the bridge.

ρp Ex Ey Gxy Gxz Gyz νxy

(kg·m−3) (GPa) (GPa) (GPa) (GPa) (GPa)

Spruce 380 11.0 0.650 0.66 1.2 0.042 0.26

Beech 750 13.7 2.24 1.61 1.06 0.46 0.3

46



TABLE II. Parameters for the note D♯1 used in the simulations shown in Figure 6. The

observation point is located at a distance of 6 cm from one end. Simply supported boundary

conditions are considered.

L A ρc F T0 E

(m) (m2) (kg·m−3) (N) (Pa)

1.945 1.31× 10−6 7850 5.642 1328 2.02× 1011

I G κ Nx order ∆t

(m4) (Pa) (s)

1.78× 10−14 1.00× 1010 0.95 300 4 5× 10−6
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TABLE III. Parameters used for the strings in the simulations

Note D♯1 C2 F3 C♯5 G6

L (m) 1.945 1.600 0.961 0.326 0.124

d (mm) 1.48 0.9502 1, 0525 0, 921 0.794

F 5.73 3.55 1 1 1

T0 (N) 1781 865 774 684 587

f0 (Hz) 38.9 65.4 174.6 555.6 1571.4

p 2.4 2.27 2.4 2.6 3.0

KH (N·m−p) 4.0× 108 2× 109 1.0× 109 2.8× 1010 2.3× 1011

MH (g) 12.00 10.20 9.00 7.90 6.77

xH (m) 0.25 0.2 0.115 0.039 0.015

x0 (m) 0.47 0.59 0.54 0.88 1.16

y0 (m) 1.63 1.26 0.83 0.23 0.05

A =
πd2

4
, I =

πd4

64
, E = 2.0×1011 Pa, G = 8×1010 Pa, ρc = 7850 kg.m−3, ρ = ρcF.
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TABLE IV. String amplitude and initial hammer velocity of the tones simulated with the

present model. ADR is the maximum amplitude-to-diameter ratio of the strings.

String ADR Hammer velocity (m/s) dynamics

D♯1 0.568 0.5 p

D♯1 1.77 1.5 mf

D♯1 3.59 3 f

C2 0.685 0.5 p

C2 2.01 1.5 mf

C2 4.05 3 f

F3 0.337 0.5 p

F3 1.04 1.5 mf

F3 2.10 3 f

C♯5 0.274 0.5 p

C♯5 0.87 1.5 mf

C♯5 1.76 3 f

C♯5 2.64 4.5 ff

G6 0.12 0.5 p

G6 0.443 1.5 mf

G6 0.96 3 f
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