Skip to Main content Skip to Navigation
Journal articles

Convergence analysis of the Jacobi-Davidson method applied to a generalized eigenproblem

Grace Hechme 1
1 POEMS - Propagation des Ondes : Étude Mathématique et Simulation
CNRS - Centre National de la Recherche Scientifique : UMR7231, UMA - Unité de Mathématiques Appliquées, Inria Saclay - Ile de France
Abstract : In this Note we consider the Jacobi-Davidson method applied to a nonsymmetric generalized eigenproblem. We analyze the convergence behavior of the method when the linear systems involved, known as the correction equations, are solved approximately. Our analysis also exhibits quadratic convergence when the corrections are solved exactly. To cite this article: G. Hechme, C. R. Acad. Sci. Paris, Ser. I 345 (2007). © 2007 Académie des sciences.
Document type :
Journal articles
Complete list of metadatas

https://hal-ensta-paris.archives-ouvertes.fr//hal-00876229
Contributor : Aurélien Arnoux <>
Submitted on : Friday, October 25, 2013 - 10:21:31 AM
Last modification on : Wednesday, July 3, 2019 - 10:48:03 AM

Identifiers

Collections

Citation

Grace Hechme. Convergence analysis of the Jacobi-Davidson method applied to a generalized eigenproblem. Comptes Rendus Mathématique, Elsevier Masson, 2007, 345 (5), pp.293-296. ⟨10.1016/j.crma.2007.07.003⟩. ⟨hal-00876229⟩

Share

Metrics

Record views

199