%0 Journal Article %T Well-posedness of the Drude-Born-Fedorov model for chiral media %+ Propagation des Ondes : Étude Mathématique et Simulation (POEMS) %+ CEntre de REcherches en MAthématiques de la DEcision (CEREMADE) %A Ciarlet, Patrick %A Legendre, Guillaume %< avec comité de lecture %@ 0218-2025 %J Mathematical Models and Methods in Applied Sciences %I World Scientific Publishing %V 17 %N 3 %P 461-484 %8 2007 %D 2007 %R 10.1142/s0218202507001991 %Z Mathematics [math]/Numerical Analysis [math.NA]Journal articles %X We consider a chiral medium in a bounded domain, enclosed in a perfectly conducting material. We solve the transient Maxwell equations in this domain, when the medium is modeled by the Drude-Born-Fedorov constitutive equations. The input data is located on the boundary, in the form of given surface current and surface charge densities. It is proved that, except for a countable set of chirality admittance values, the problem is mathematically well-posed. This result holds for domains with non-smooth boundaries. © World Scientific Publishing Company. %G English %L hal-00876234 %U https://hal-ensta-paris.archives-ouvertes.fr/hal-00876234 %~ ENSTA %~ CNRS %~ INRIA %~ UNIV-DAUPHINE %~ INRIA-SACLAY %~ INSMI %~ CEREMADE %~ PARISTECH %~ INRIA_TEST %~ TESTALAIN1 %~ UMA_ENSTA %~ INRIA2 %~ TDS-MACS %~ PSL %~ UNIV-DAUPHINE-PSL