Singular electromagnetic fields: Inductive approach [Singularités électromagnétiques: Une approche inductive]

Franck Assous 1 Patrick Ciarlet 2 Emmanuelle Garcia 2
2 POEMS - Propagation des Ondes : Étude Mathématique et Simulation
Inria Saclay - Ile de France, UMA - Unité de Mathématiques Appliquées, CNRS - Centre National de la Recherche Scientifique : UMR7231
Abstract : In a non-convex polyhedral domain, we describe the local trace (i.e. defined on a face) of the normal derivative of an L2 function, with L2 Laplacian. We then provide generalized integration by parts formulae for the Laplace, divergence and curl operators. Finally, these results allow us to split electromagnetic fields into regular and singular parts, which can be characterized. © 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Document type :
Journal articles
Complete list of metadatas

https://hal-ensta-paris.archives-ouvertes.fr//hal-00876241
Contributor : Aurélien Arnoux <>
Submitted on : Thursday, October 31, 2013 - 5:18:43 PM
Last modification on : Wednesday, July 3, 2019 - 10:48:03 AM

Identifiers

Collections

Citation

Franck Assous, Patrick Ciarlet, Emmanuelle Garcia. Singular electromagnetic fields: Inductive approach [Singularités électromagnétiques: Une approche inductive]. Comptes Rendus Mathématique, Elsevier Masson, 2005, 341 (10), pp.605-610. ⟨10.1016/j.crma.2005.09.034⟩. ⟨hal-00876241⟩

Share

Metrics

Record views

299