Skip to Main content Skip to Navigation
Journal articles

Nodal finite element methods for Maxwell's equations [Eléments finis nodaux pour les équations de Maxwell]

Erell Jamelot 1
1 POEMS - Propagation des Ondes : Étude Mathématique et Simulation
Inria Saclay - Ile de France, UMA - Unité de Mathématiques Appliquées, CNRS - Centre National de la Recherche Scientifique : UMR7231
Abstract : An original approach of the singular complement method for Maxwell's equations in bounded polygonal domains is presented. A splitting of the electric field à la Moussaoui is proposed: E=ER+λxP, where ER∈H1(ω)², λ depends on the data and domain and xP is known explicitly. The same splitting can used for the magnetic field. No cut-off function is needed and improved error estimates are derived. © 2004 Académie des sciences. Publié par Elsevier SAS. Tous droits réservés.
Document type :
Journal articles
Complete list of metadata

https://hal-ensta-paris.archives-ouvertes.fr//hal-00876245
Contributor : Aurélien Arnoux <>
Submitted on : Monday, November 4, 2013 - 10:58:53 AM
Last modification on : Monday, July 19, 2021 - 4:40:03 PM

Identifiers

Collections

Citation

Erell Jamelot. Nodal finite element methods for Maxwell's equations [Eléments finis nodaux pour les équations de Maxwell]. Comptes Rendus. Mathématique, Centre Mersenne (2020-..) ; Elsevier Masson (2002-2019), 2004, 339 (11), pp.809-814. ⟨10.1016/j.crma.2004.10.020⟩. ⟨hal-00876245⟩

Share

Metrics

Record views

329