HAL API platform

Analyticity and Gevrey class regularity for a strongly damped wave equation with hyperbolic dynamic boundary conditions Philip Jameson Graber 737914-0 Irena Lasiecka 500861-0 Aurélien Arnoux 35d25840ba5319ce5c963e4b7b75febb polytechnique.edu 2014-04-01 14:46:30 2022-05-11 12:06:05 2014-04-01 14:46:30 2013-10 contributor Aurélien Arnoux 35d25840ba5319ce5c963e4b7b75febb polytechnique.edu CCSD hal-00968742 https://hal-ensta-paris.archives-ouvertes.fr/hal-00968742 graber:hal-00968742 <i>Semigroup Forum</i>, 2013, <a target="_blank" href="https://dx.doi.org/10.1007/s00233-013-9534-3">&#x27E8;10.1007/s00233-013-9534-3&#x27E9;</a> Semigroup Forum, 2013, &#x27E8;10.1007/s00233-013-9534-3&#x27E9; ENSTA Paris Unité de Mathématiques Appliquées (UMA) International No Yes Analyticity and Gevrey class regularity for a strongly damped wave equation with hyperbolic dynamic boundary conditions Philip Jameson Graber 737914-0 Irena Lasiecka 500861-0 10288 0037-1912 1432-2137 Semigroup Forum Springer Verlag - 2013-10 10.1007/s00233-013-9534-3 English Journal articles Journal articles Journal articles

We consider a linear system of PDEs of the form \begin{equation} \begin{array}{c} \begin{array}{rcl} u_{tt} - c\Delta u_t - \Delta u = 0 & \text{in} & \Omega \times (0,T)\\ u_{tt} + \partial_n (u+cu_t) - \Delta_\Gamma (c \alpha u_t + u) = 0 & \text{on} & \Gamma_1 \times (0,T)\\ u = 0 & \text{on} & \Gamma_0 \times (0,T) \end{array}\\ (u(0),u_t(0),u|_{\Gamma_1}(0),u_t|_{\Gamma_1}(0)) \in \s{H} \end{array} \end{equation} on a bounded domain $\Omega$ with boundary $\Gamma = \Gamma_1 \cup \Gamma_0$. We show that the system generates a strongly continuous semigroup $T(t)$ which is analytic for $\alpha > 0$ and of Gevrey class for $\alpha = 0$. In both cases the flow exhibits a regularizing effect on the data. In particular, we prove quantitative time-smoothing estimates of the form $\|(d/dt)T(t)\| \lesssim |t|^{-1}$ for $\alpha > 0$, $\|(d/dt)T(t)\| \lesssim |t|^{-2}$ for $\alpha = 0$. Moreover, when $\alpha = 0$ we prove a novel result which shows that these estimates hold under relatively bounded perturbations up to $1/2$ power of the generator.

Optimisation et commande OC
828, boulevard des Maréchaux 91762 Palaiseau Cedex
http://uma.ensta-paristech.fr/oc
203564391 200022595P Unité de Mathématiques Appliquées UMA
828, boulevard des Maréchaux 91762 Palaiseau Cedex
https://uma.ensta-paris.fr/
028139577 École Nationale Supérieure de Techniques Avancées ENSTA Paris
828, boulevard des Maréchaux 91762 Palaiseau Cedex
https://www.ensta-paris.fr/fr