Existence and Asymptotic Behavior of the Wave Equation with Dynamic Boundary Conditions

Abstract : The goal of this work is to study a model of the strongly damped wave equation with dynamic boundary conditions and nonlinear boundary/interior sources and nonlinear boundary/interior damping. First, applying the nonlinear semigroup theory, we show the existence and uniqueness of local in time solutions. In addition, we show that in the strongly damped case solutions gain additional regularity for positive times t>0. Second, we show that under some restrictions on the initial data and if the interior source dominates the interior damping term and if the boundary source dominates the boundary damping, then the solution grows as an exponential function. Moreover, in the absence of the strong damping term, we prove that the solution ceases to exists and blows up in finite time.
Document type :
Journal articles
Complete list of metadatas

https://hal-ensta-paris.archives-ouvertes.fr//hal-00969123
Contributor : Aurélien Arnoux <>
Submitted on : Wednesday, April 2, 2014 - 10:16:29 AM
Last modification on : Wednesday, July 3, 2019 - 10:48:04 AM

Links full text

Identifiers

Collections

Citation

Philip Jameson Graber, Belkacem Said-Houari. Existence and Asymptotic Behavior of the Wave Equation with Dynamic Boundary Conditions. Applied Mathematics and Optimization, Springer Verlag (Germany), 2012, 66, pp.81-122. ⟨10.1007/s00245-012-9165-1⟩. ⟨hal-00969123⟩

Share

Metrics

Record views

146