HAL CCSD
Analysis of Acoustic Wave Propagation in a Thin Moving Fluid
Joly, Patrick
Weder, Ricardo
Propagation des Ondes : Étude Mathématique et Simulation (POEMS) ; Inria Saclay - Ile de France ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Unité de Mathématiques Appliquées (UMA) ; École Nationale Supérieure de Techniques Avancées (ENSTA Paris)-École Nationale Supérieure de Techniques Avancées (ENSTA Paris)-Centre National de la Recherche Scientifique (CNRS)
International audience
ISSN: 0036-1399
SIAM Journal on Applied Mathematics
Society for Industrial and Applied Mathematics
hal-00974778
https://hal-ensta-paris.archives-ouvertes.fr/hal-00974778
https://hal-ensta-paris.archives-ouvertes.fr/hal-00974778
SIAM Journal on Applied Mathematics, 2010, 70, pp.2449-2472. ⟨10.1137/09077237X⟩
ARXIV: 0907.5562
info:eu-repo/semantics/altIdentifier/arxiv/0907.5562
DOI: 10.1137/09077237X
info:eu-repo/semantics/altIdentifier/doi/10.1137/09077237X
en
[MATH]Mathematics [math]
info:eu-repo/semantics/article
Journal articles
We study the propagation of acoustic waves in a fluid that is contained in a thin two-dimensional tube and that it is moving with a velocity profile that depends only on the transversal coordinate of the tube. The governing equations are the Galbrun equations or, equivalently, the linearized Euler equations. We analyze the approximate model that was recently derived by Bonnet-Bendhia, Durufle, and Joly to describe the propagation of the acoustic waves in the limit when the width of the tube goes to zero. We study this model for strictly monotonic stable velocity profiles. We prove that the equations of the model of Bonnet-Bendhia, Durufle, and Joly are well posed, i.e., that there is a unique global solution, and that the solution depends continuously on the initial data. Moreover, we prove that for smooth profiles the solution grows at most as t(3) as t -> infinity, and that for piecewise linear profiles it grows at most as t(4). This establishes the stability of the model in a weak sense. These results are obtained by constructing a quasi-explicit representation of the solution. Our quasi-explicit representation gives a physical interpretation of the propagation of acoustic waves in the fluid and provides an efficient way to compute the solution numerically.
2010