Optimized higher order time discretization of second order hyperbolic problems: Construction and numerical study

Patrick Joly 1 Jerónimo Rodríguez 1
1 POEMS - Propagation des Ondes : Étude Mathématique et Simulation
Inria Saclay - Ile de France, UMA - Unité de Mathématiques Appliquées, CNRS - Centre National de la Recherche Scientifique : UMR7231
Abstract : We investigate explicit higher order time discretizations of linear second order hyperbolic problems. We study the even order (2m2m) schemes obtained by the modified equation method. We show that the corresponding CFL upper bound for the time step remains bounded when the order of the scheme increases. We propose variants of these schemes constructed to optimize the CFL condition. The corresponding optimization problem is analyzed in detail. The optimal schemes are validated through various numerical results.
Document type :
Journal articles
Complete list of metadatas

https://hal-ensta-paris.archives-ouvertes.fr//hal-00976330
Contributor : Aurélien Arnoux <>
Submitted on : Wednesday, April 9, 2014 - 4:59:50 PM
Last modification on : Wednesday, July 3, 2019 - 10:48:03 AM

Links full text

Identifiers

Collections

Citation

Patrick Joly, Jerónimo Rodríguez. Optimized higher order time discretization of second order hyperbolic problems: Construction and numerical study. Journal of Computational and Applied Mathematics, Elsevier, 2009, 234 (6), pp.1953-1961. ⟨10.1016/j.cam.2009.08.046⟩. ⟨hal-00976330⟩

Share

Metrics

Record views

310