Fully discrete finite element approaches for time-dependent Maxwell's equations

Patrick Ciarlet 1 Jun Zou
1 POEMS - Propagation des Ondes : Étude Mathématique et Simulation
Inria Saclay - Ile de France, UMA - Unité de Mathématiques Appliquées, CNRS - Centre National de la Recherche Scientifique : UMR7231
Abstract : A fully discrete finite element method is used to approximate the electric field equation derived from time-dependent Maxwell's equations in three dimensional polyhedral domains. Optimal energy-norm error estimates are achieved for general Lipschitz polyhedral domains. Optimal L2 -norm error estimates are obtained for convex polyhedral domains.
Document type :
Journal articles
Complete list of metadatas

https://hal-ensta-paris.archives-ouvertes.fr//hal-01010719
Contributor : Aurélien Arnoux <>
Submitted on : Friday, June 20, 2014 - 12:49:32 PM
Last modification on : Thursday, July 4, 2019 - 4:00:49 AM

Links full text

Identifiers

Collections

Citation

Patrick Ciarlet, Jun Zou. Fully discrete finite element approaches for time-dependent Maxwell's equations. Numerische Mathematik, Springer Verlag, 1999, 82 (2), pp.193-219. ⟨10.1007/s002110050417⟩. ⟨hal-01010719⟩

Share

Metrics

Record views

200