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Reduced-order minimum time control of advection-reactiondiffusion
systems via dynamic programming

Dante Kalisé and Axel Kronet

Abstract— We present a numerical approach for the time-
optimal feedback control of an advection-reaction-diffuson
model. Our approach is composed by three main building
blocks: approximation of the abstract system dynamics, fe#
back computation based on dynamic programming and state
observation. For the approximation of the abstract dynamics,
we consider a finite element semi-discretization in spacegading
to a large-scale dynamical system, whose dimension is redact
by means of a Balanced Truncation algorithm. Next, we apply
the dynamic programming principle over the reduced model,
and characterize the value function of the optimal control &
a viscosity solution of a Hamilton-Jacobi-Bellman equatia,
which is numerically approximated with a semi-Lagrangian
scheme. Finally, the computation of the corresponding fedzhck
controls and its insertion into the control loop is performed by
implementing a Luenberger observer.

In this paper, we consider a minimum time problem wit
dynamics governed by a one-dimensional advection-reacti
diffusion model; such a problem arises, for instance, i
minimum time stabilization of fluid flow passing through
slender structures, or in the control of chemically reactiv
processes. The abstract evolutionary system is given by

INTRODUCTION

8ty = Ay + B’LL,
y(0) = =z, (1.1)
z=_Cy,

h

system has a unique solution @((0,7),C(£2)), see [9,

p. 360] and [21, p.19]. Furthermore, the uncontrolled sys-
tem is exponentially stable fot; < 72a;. For a target
T ={2€0@) | |zlc@m <e} e > 0, we address the
following minimum time problem:

min 7T, S.t.

ueld
Oy = Ay + Bu,
y(0) ==,
y(T)eT

ford = L*>°((0,T),U) with

(1.2)

U={ueR|u, <u(s) <upa.el,

and boundsu,,u;, € R. For further comments on the
continuous problem for the casg = 0, we refer to [18].

Our aim is to derive approximate controllers in feedback
?orm for the aforementioned problem. A first step towards
this goal is to perform a finite element semi-discretization
in space of the advection-reaction-diffusion equatione Th
resulting control problem replaces the abstract dynanhits (
by a large-scale, finite dimensional dynamical system. &t th
point, it would be theoretically feasible to apply the Dyriam

Programming Principle (DPP) in order to characterize the

o

value function of the optimal control problem as the vistosi
wherey = y(&, t) represents the state of the system (here solution of a Hamilton-Jacobi-Bellman (HJB) equation, as
andt stands for the spatial coordinate and time, respectivelypresented in [13]. However, the fact that such an equation
u = u(t) is a time-dependent scalar control signal, anés defined over a state space of the same dimension as
z = z(&,t) represents an observation. The system is spatialthe semi-discretized dynamics, renders it computatignall
confined to¢ € 2 = (0,L) C R, L > 0, and timet € intractable. Therefore, it is necessary to include an aufdit
[0,T7]. Using the usual notations for Lebesgue and Sobolepproximation step in order to reduce the dimensionality of

spaces, the free-dynamics operatbr H}(2) — H~1(£2)
is defined as

Ay = a10¢y + a20ey + asy,

with a; € R™, as,a3 € R, whereas the control operatsr
and the observation operat6rare both indicator functions
over open subsets). C (2 and {2, C {2, respectively.
For an initial statex € H}(2) andu € L*(0,T) the

ID. Kalise is with the Johann Radon Institute for Computatioand
Applied Mathematics (RICAM), Austrian Academy of SciencAienberg-
erstrale 69, A-4040 Linz, Austria. He acknowledges supfrorn the
FWF-START project: Sparse Approximation and Optimization High
Dimensions and the ITN - Marie Curie Grant n. 264735-SADC@néil:
dante.kalise@oeaw.ac.at

2A. Kroner is with the Johann Radon Institute for Computagioand
Applied Mathematics (RICAM), Austrian Academy of SciencAienberg-
erstraBe 69, A-4040 Linz, Austria. E-mail: axel.kroenee@a.ac.at

the semi-discrete system. A standard tool for this purpsse i
the application of a Balanced Truncation algorithm, which
synthesizes the relevant information in terms of conttila

ity and observability of the system, into a lower dimenslona
model of prescribed accuracy (with respect to a measure of
the input-output mapping). Once the reduced dynamics have
been obtained, the application of the DPP over the resulting
system leads to an approximate, low-order feedback con-
troller. However, the control law assumes a full knowledge
of the reduced state of the system which, according to (I.1),
is not available; instead, we receive a measured ouiput
Therefore, the final step in the control loop consists in the
implementation of a reduced order Luenberger observer in
order to generate a reliable estimate of the internal dyoami
of the system, for an accurate computation of the feedback

mapping.



To set this paper in perspective, we relate our approach tons { ¢; }fV:l, we introduce the mass matrixk ¢ RY*N
the previous works [2], [17], [19], [16], which also conside with M; ; = (¢;,¢;), the stiffness matrixk € RY*N
optimal feedback control problems for infinite-dimensibnawith K; ; = (0:¢;, 0cy;), and for the discretization of the
dynamics, using either proper orthogonal decompositioadvection termD € RY*Y with D, ; = (O¢i,¢;), Where
or spectral elements to obtain a low dimensional semi-,:) denotes the usual inner product it¥(f2). Further,
discrete system. A numerical solution for feedback contrale define the observation matr& = M 'xNNM €
problems for nonlinear parabolic equations is considened RV*N, N, < N, for matrix yNoV € RNe*¥ of rank IV,
[7]. Numerical implementations and approximation resultsvith entriesvaj’N € {0,1}, according to the observation
for feedback problems of (second-order) hyperbolic equaet 2, and the mass matrix/y, € RM*Ne which we
tions using Riccati equations can be found in [14], [15]choose according to the observed components. For the ansatz
and references therein. Similar approaches, based on mogélr = Zi’il yivi, Wherey; are time-dependent nodal values

predictive control, which can be interpreted as a relaxegf the finite element functiong“*, we introducey’y =

version of dynamic programming, have been presented @, ...,yy)” which satisfies the semi-discrete system given
[8], [4]. Minimum time problems were first considered inpy

[6]. For time optimal control problems of parabolic equaso oy = ANyN + BN,

see [12], [18], [20], [23], [22], [27]. The novelty of this yN (0) = 2V, (I1.1)

article resides in the combination of HIJB techniques for _ NN

the computation of time-optimal feedback controllers with 2=ty

model reduction and state observation algorithms progidinfor 2V € RY with 2¥ = (z, ¢;), and

thus a c_on&stent approach for closed-loop control of it&fini AN = M7 (1K + 3D + agM) ,

dimensional systems. N N N

The paper is organized as follows. In Section I , the semi- BY =M""x., [xcli=Xe9i),

discretization of the dynamics and its reduction via Baéhc \yith . the characteristic function of2.. Error estimates

Truncation is presented. In Section Ill we introduce then 7,.2-norm for this type of semi-discrete approximation are

dynamic programming framework and a semi-Lagrangiapresented in [26].

scheme for the solution of the resulting HJB equation. In For the convenience of the reader, we Short'y recall

Section IV, we propose a Luenberger observer for staifie basic idea of Balanced Truncation, see [25], [24]. In

estimation in the closed-loop implementation. Section \the following we assume thatl™ is stable,(AY,B") is

reports numerical examples assessing the performance afhtrollable, and(.A",C") is observable. To simplify the

capabilities of the proposed approach. notation we drop the indexV. First, note that under the
Il. DISCRETIZATION AND MODEL REDUCTION aforementioned assumptions,. .there ex.ists a centroltgabili

GramianP and an observability Gramia® solving the

In this section, we present a semi-discretization of thEyapunov equations

reaction-diffusion-advection equation (l.1) resulting a
finite-dimensional dynamical system. At this level, the ap- PA+ATP =-CTC,
plication of a HIB-based approach is still unfeasible from a QAT + AQ = —BBT.

computational point of view, since the PDE characterizing . ) . .
%éece the Gramians are positive-definite, We can compute

the value function of the problem is posed over a state spa =k X
ir Cholesky factord? and L, i.e.

of the same dimension as the semi-discretization. To redu
the dimensionality of the problem, we apply a Balanced P=RR", o=1LL",
Truneatlon algorlthm_to the seml-dlsc_rete dynamical sms’_[e and solve the singular value decomposition/dfR. We fix
In this way, we obtain a low-dimensional model for which . . .

. L : a reduced-order model dimensiere IN, and split
the corresponding HJB equation is numerically solvable.
The building blocks of this procedure are illustrated in-Fig LTR = (U1 Us) <21 0 > <V1)
ure 1. Balanced Truncation for optimal control of evolution 0 X)) \Va)”’
equations has been considered in [24]. Classical Balancggtn orthonormal matrice&’ — (U, Us) andV = (V; Va)T
Truncation is limited to linear problems, but it has dedieab 5,4 diagonal matrices
properties, such as stability preservation.

21 :dia‘g(ala"'aa7’)7 22 :diag(0'7-+1,...,0'l),

PDE FEM discretization Balanced truncation HJB with

A J

O1> >0y > o > >0 >0,
Fig. 1: Building blocks for the low-order optimal control problem. andl = rank(LTR)

. The singular values of” R, known in

To di e (11) i . . . this context as Hankel singular values, provide a simuftane
0 discretize {I.1) in space we use continuous, PIECEWISSs measure of both controllability and observability gies

linear finite elements. For a givew € N, let § = of the corresponding balanced state. By setting

{jAz} 4 Az = &+, be a regular subdivision of the in-

terval|0, L]. For the corresponding standard nodal basis func- W = LUlzf%, S =RW Ef%



we can compute the following transformation In order to solve the HJB equation numerically, we apply
S v T . a semi-Lagrangian scheme following [3]; for a general
AT=WAS, B" =58, C"=CW, introduction to semi-Lagrangian schemes we refer to [5],

and obtain the reduced problem [10]. Be begin by discretizing the dynamical system in time
with stepsizeh, and apply the DPP for the discrete-time

oy" = A"y" + B"u, dynamical system. Then, for spatial mesh parameteiR . ,

v (0) = WTe, (1.2) Wwe introduce a regular mesh = {z; [I € Z", Ik € S}

P oy and denote the set of all multi-indicdswith z; = [k € G
Z =y by J. We restrict the computations to a domahcC R",
with y" € R". and impose an artificial Dirichlet boundary condition @8
For the error between the solution of the reduced modelhich we set to the valud. The fully discretized HJB
(11.2) in comparison to the solution of the full model (Il.1) equation then reads
on (0,00) there holds, see, e.g., [24],

Rok(o \ — s h.k . _
2" = 2l2(0,00) < 20071+ + 01) [l 20,0 o) = g P e kG ) 1= B
This estimate gives an upper bound for the error in the for I € Jin,
observation depending on the dimension of the reduced vk (2r) =0
model. for I € Jr,
I1l. THE DYNAMIC PROGRAMMING APPROACH ’Uh’k(ﬂ?l) =1
By applying a Balanced Truncation algorithm over the for I e JﬁTtS
semi-discrete model, we obtain a reduced dynamical system..th — =" and (I1.5)
This leads to the following approximated minimum time"! B=e"an
problem . Jow={I|xr+hf(xr,u) ¢S foranyu e U},
min T,  s.t. Jr={I|z;eTNS}, (111.6)
Oy =A"y+ Bu, (I11.1) Jn=TI¢€ J\ (JoutU J7).
y"(0) = W, Here Z[] denotes a linear interpolation operator. Having
y'(T)eT, approximated the value function by means of the aforemen-

) ) ] _tioned scheme, we can recover the feedback controller for a
This latter problem is solved by applying the dynam"igiven stater by

programming principle, which in this case is given by

2 — : h,k1( 5
T(z) = ig{{(T + Ty (r,u))) (111.2) u(z) = arg min (52[1} (x + hf(x,u))) (11.7)
This latter expression requires the knowledge of the whole
state, whereas our system considers an observation eguatio
In the next section, we introduce an observer implementatio

for an accurate trajectory computation.

foralz e R={xcR'|T(z) <}, 7 €[0,T(x)) with
x & T. Herey,(r,u) denotes the state at timefor initial
statex at time zero and controk. The DPP leads to the
following HJB equation characterizing the minimum time

H(x,DT) =0 in R\ T, :
T—0 onaT (111.3) . In order to generate a cpherent link betvv_een the observa-
’ ' tion and the feedback law, it is necessary to implement a stat
T(z) = 400 asz —xz9 € IR observer. More specifically, the approximation of system
(I.1) generates a dynamical outputwhereas the feedback
mapping (l11.7) assumes that a full knowledge of the intérna

IV. LUENBERGEROBSERVER

with Hamiltonian

H(x,p) = sup(—f(z,u)"p) — 1, statey is available. By implementing a Luenberger observer,
uet we are able to circumvent this difficulty and to close the

and control loop. The interplay of the observer and control kfoc
flz,u)=A"x + B'u. is illustrated in Figure 2. The observer is built upon the

reduced order dynamics, corresponding to the “true” state

Applying the Kruzkov transform from which the feedback mapping can be computed. The

1—eTE) R estimated statg is governed by
'U(x) = 1 dR
z Oyg=A"g+Bu+ L(C"y— z),
we further obtain 7(0) = 9o,

v+ H(@, Dv) =0 in R*\T, (.4) Wheregy € R™ and L € R™No needs to be computed
v=0 ondT. such thatA™ — LC" is asymptotically stable and with a



decay rate faster than the free system dynamdés In to the system (lll.5) which is solved by means of a value
our particular setting, we recall thad” is asymptotically iteration algorithm defined upon the grid point valués=
stable, and therefore our problem reduces to find a suitabje™*(x;)},

L which accelerates the decay of the estimation error. The ntl "

observer gives us now a corresponding state estignateich 4 =5(V")

is inserted in the expression (I1.7), vyielding a feedback min(BZ[V(er + hf(zr,u))) +1 -5,
u = u(y) to be connected to the full-order system. forI e J.
0
Plant (real system) [S(V)lz = for I € Jy
! 1
Initial state Observer for I € Jout

which in our case is stopped when two consecutive iterations

hold ||[V™ — V" *+1|| < k2. The control setU is discretized

into 10 equidistant points. The target $etis a ball around

the origin of radius = h.

State observer and trajectory computation. The imple-

mentation of the observer, in this particular case, redtmes
V. NUMERICAL EXAMPLES determiningL € R"*" such that the eigenvalues df — LC"

We illustrate the application of the proposed approach artkcay sufficiently fast compared to the system dynamics. For
the interplay between the different building blocks. Fivge this problem, we prescribe eigenvalues 10 times faster than
describe specific details concerning common settings r thhe slowest eigenvalues od”, and the initial observation
numerical implementation. estimate is setj(0) = 0. For trajectory computation, at
System configuration and parametersiIn both tests, the every time step, once the current state of the system has been
physical domain corresponds t@ = [0, 1], the operator estimated, the feedback rule is computed by means of (l11.7)
B is an indicator function over the subset = (0.4,0.6), and the system advances in time with a second-order implicit
and the observation operat6ris an indicator function over integrator. Let us stress that, because of the computationa
2, = (0.3,0.7) for Test 1 andf2, = (2 for Test 2. In effort performed in the HIB step, where the value function is
general, the main issue when prescribing a setting relatesdomputed for the whole state space of interest, the cpu time
abstract controllability and observability assumptiomkjch  related to trajectory and feedback computation is nedkgib
play a role in both the reduction and in the HIB step; thas it mainly reduces to a single-node evaluation of arrival
aforementioned configuration has been selected in order points.
fulfill these requirements. Nevertheless, we report that th We present two numerical tests, first a purely reaction-
presented approach can be implemented also for point cadiffusion model, and in a further step we also include
trol/observation configurations. The control set corregfso advective effects.

HJB equation

Fig. 2: Overview over the observer mechanism

to U = [-1,1]. Simulations are shown with the initial ] -

conditionz(¢) = 0.2sin(r¢), and for a time frame of[s]. A Test 1: reaction-diffusion

Semi-discretization and model reduction. Semi- In this first test we set for the free-dynamics operator
discretization in space is performed with piecewise; = 0.05, a2 = 0, and a3 = 0.1, i.e., advection is

linear finite elements. In both tests, the results wereot considered. The resulting reaction-diffusion system i
obtained with a discretization of 200 elements in spac@&xponentially stable, and thus our control goal reduces to
The resulting large-scale system is reduced by means athieve faster regulation of the initial state to the origin

a Balanced Truncation algorithm; we use the numericdfter discretizing the system in space by finite elements
implementation provided by the MORLAB package [1]. we balance the resulting large-scale system. Figure 3 shows
Hamilton-Jacobi-Bellman equation. The numerical ap- the evolution of the Hankel singular values in balanced
proximation of the resulting HJB equation by means otoordinates; the error of the truncation step is governed by
a semi-Lagrangian schemes follows the general guidelindse largest Hankel singular value which has been neglected,
presented in the literature as in [5], [10]. The equation iand in our case, to consider 3 reduced states leads to an
solved in a subdomain of the reduced state-space, in oacceptable error. Note that this figure also assess ourehoic
case the computational domain is given @y= [-1,1]> of Balanced Truncation for the reduction procedure, as the
considering only three reduced states in both tests. The stafast decay of the singular values is fundamental if a good
space discretization is given by the space paramieter approximation with a few number of states is required. For a
0.025 and the pseudo-time paramefer= k/||A"||, which system with 3 reduced states, computation time of the HIB
gives a good balance between accuracy and computatistep is of approximately 50 seconds. CPU time increases
time (as arrival points are computed in close neighborhoattamatically for high-dimensional problems, however, by
of their departure). The semi-Lagrangian discretizateads using accelerated iterative algorithms as in [3], it is [ladss
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Fig. 5: Test 1 (without advection). Dynamical response of the
system. Top: Free-system dynamics (position v/s time)tdbut
Full-order controlled dynamics with reduced-order, minimtime
controller.

tering in a considerable way. The controller exhibits a good
behavior with respect to output noise (we consider a white
noise amplified up to a 30 of the maximum output value),
despite the assignment of fast poles for the observer. This
is due to the bang-bang structure of the system, where only
strong enough output perturbations will cause an estinuate t
be located on the other side of a given switching surface.

Fig. 4: Test 1 (without advection). Value function: cut®& = 0. B. Test 2: advection-diffusion-reaction

We perform a second test including advective effects; we

seta; = 0.05, az = 1.0, andaz = 0.1. Note that despite
to solve similar problems in four dimensions in the saméhe inclusion of an advective term, such a setting does not
amount of time, and to keep a cpu time for five dimensionaleteriorate the stability properties of the original contius
problems on the order of 10 minutes (for coarse meshes)system. A first difference with respect to the previous test
The next step is illustrated in Figure 4, where the valuean be observed in Figure 7, where it can be seen that the
function obtained via the DPP approach is shown. Sucécaling of the decay of the Hankel singular values change,
value function shape often appears in minimum time contréhus suggesting that a larger number of reduced statesdshoul
of stable linear systems, and is related to switching curvd®e considered for a similar level of accuracy as in the
splitting the associated control space into a discrete mumbprevious example. However, in this test, we will consider
of sets, i.e., a bang-bang type of control. three reduced states, as the error associated to the fourth
Dynamical response of the system is presented in Figuressthgular value is still within an acceptable range.
and 6, where the performance of the minimum time con- The approximation of the associated HJB equation is
troller can be observed compared to the free dynamics, tlilkistrated in Figure 8, where a cut of the value functiomglo
fast decay of the estimation error, and the respective abntrzs = 0 is shown. The dynamic response of the controlled
signal, which emulates the expected bang-bang behavisystem is presented in Figures 9 and 10. In Figure 9, it can
Differences with an exact bang-bang controller, namely thige seen that although the presence of advection translates
chattering after the first switching, are observed due to thiato a regulation of the state in finite time, there is a
approximate character of the discrete HIB equation and tlensiderable improvement in the performance of the system
computation of trajectories over a discrete state-spaite gwhen a minimum time controller is considered, as both
(where switching curves are also approximated), which igdvection and regulation via the control action are conthine
a natural limitation of discrete dynamic programming-lshseln this test case we assume full observation of the state, i.e
approaches. Aiming at a more realistic online implementasur estimation error is uniquely related to the guess of the
tion, in [11], the authors have considered @&t penalized initial condition 3(0). Note that, although there is a decay
minimum time problems where the bang-bang structure is the estimation error, the effect of advection can be glear
replaced by a bang-zero-bang behavior which reduces chabserved in Figure 10. Finally, in a similar way as in the
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bang control signal, with inaccuracies due to the discrete
resolution of the HIB equation.

VI. CONCLUDING REMARKS

We have presented a computationally feasible framework
for the implementation of approximate feedback controls in
infinite-dimensional systems. Our proposed approach con-
sists in three main steps: semi-discretization and modigror
reduction of the abstract system dynamics, the application
of DPP techniques in order to achieve a characterization
of the value function for the lower dimensional optimal
control problem, and the implementation of a state observer
in order to close the control loop. Every block has a solid
computational framework where different numerical method
are available. Our results suggest that the approach is able
to yield reasonably robust controllers (in the sense thay th
can perform well when connected to the large-scale, semi-

discrete dynamics), already with a reduced number of states
Yhe proposed approach is flexible as it supports variations i
the application of reduction techniques, the optimal featb

Fig. 7: Test 2 (with advection). Decay of the Hankel singular value
in balanced coordinates.
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