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Reduced-order minimum time control of advection-reaction-diffusion
systems via dynamic programming

Dante Kalise1 and Axel Kröner2

Abstract— We present a numerical approach for the time-
optimal feedback control of an advection-reaction-diffusion
model. Our approach is composed by three main building
blocks: approximation of the abstract system dynamics, feed-
back computation based on dynamic programming and state
observation. For the approximation of the abstract dynamics,
we consider a finite element semi-discretization in space, leading
to a large-scale dynamical system, whose dimension is reduced
by means of a Balanced Truncation algorithm. Next, we apply
the dynamic programming principle over the reduced model,
and characterize the value function of the optimal control as
a viscosity solution of a Hamilton-Jacobi-Bellman equation,
which is numerically approximated with a semi-Lagrangian
scheme. Finally, the computation of the corresponding feedback
controls and its insertion into the control loop is performed by
implementing a Luenberger observer.

I. I NTRODUCTION

In this paper, we consider a minimum time problem with
dynamics governed by a one-dimensional advection-reaction-
diffusion model; such a problem arises, for instance, in
minimum time stabilization of fluid flow passing through
slender structures, or in the control of chemically reactive
processes. The abstract evolutionary system is given by











∂ty = Ay + Bu,

y(0) = x,

z = Cy ,

(I.1)

wherey = y(ξ, t) represents the state of the system (hereξ
andt stands for the spatial coordinate and time, respectively),
u = u(t) is a time-dependent scalar control signal, and
z = z(ξ, t) represents an observation. The system is spatially
confined toξ ∈ Ω = (0, L) ⊂ R, L > 0, and timet ∈
[0, T ]. Using the usual notations for Lebesgue and Sobolev
spaces, the free-dynamics operatorA : H1

0 (Ω) → H−1(Ω)
is defined as

Ay = a1∂
2
ξy + a2∂ξy + a3y,

with a1 ∈ R
+, a2, a3 ∈ R, whereas the control operatorB

and the observation operatorC are both indicator functions
over open subsetsΩc ⊂ Ω and Ωo ⊂ Ω, respectively.
For an initial statex ∈ H1

0 (Ω) and u ∈ L∞(0, T ) the
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system has a unique solution inC((0, T ), C(Ω̄)), see [9,
p. 360] and [21, p.19]. Furthermore, the uncontrolled sys-
tem is exponentially stable fora3 < π2a1. For a target
T = { z ∈ C(Ω̄) | ‖z‖C(Ω̄) ≤ ε }, ε > 0, we address the
following minimum time problem:























min
u∈U

T, s.t.

∂ty = Ay + Bu ,

y(0) = x,

y(T ) ∈ T

(I.2)

for U = L∞((0, T ), U) with

U = { u ∈ R | ua ≤ u(s) ≤ ub a.e.} ,

and boundsua, ub ∈ R. For further comments on the
continuous problem for the casea2 = 0, we refer to [18].

Our aim is to derive approximate controllers in feedback
form for the aforementioned problem. A first step towards
this goal is to perform a finite element semi-discretization
in space of the advection-reaction-diffusion equation. The
resulting control problem replaces the abstract dynamics (I.1)
by a large-scale, finite dimensional dynamical system. At this
point, it would be theoretically feasible to apply the Dynamic
Programming Principle (DPP) in order to characterize the
value function of the optimal control problem as the viscosity
solution of a Hamilton-Jacobi-Bellman (HJB) equation, as
presented in [13]. However, the fact that such an equation
is defined over a state space of the same dimension as
the semi-discretized dynamics, renders it computationally
intractable. Therefore, it is necessary to include an additional
approximation step in order to reduce the dimensionality of
the semi-discrete system. A standard tool for this purpose is
the application of a Balanced Truncation algorithm, which
synthesizes the relevant information in terms of controllabil-
ity and observability of the system, into a lower dimensional
model of prescribed accuracy (with respect to a measure of
the input-output mapping). Once the reduced dynamics have
been obtained, the application of the DPP over the resulting
system leads to an approximate, low-order feedback con-
troller. However, the control law assumes a full knowledge
of the reduced state of the system which, according to (I.1),
is not available; instead, we receive a measured outputz.
Therefore, the final step in the control loop consists in the
implementation of a reduced order Luenberger observer in
order to generate a reliable estimate of the internal dynamics
of the system, for an accurate computation of the feedback
mapping.



To set this paper in perspective, we relate our approach to
the previous works [2], [17], [19], [16], which also consider
optimal feedback control problems for infinite-dimensional
dynamics, using either proper orthogonal decomposition
or spectral elements to obtain a low dimensional semi-
discrete system. A numerical solution for feedback control
problems for nonlinear parabolic equations is considered in
[7]. Numerical implementations and approximation results
for feedback problems of (second-order) hyperbolic equa-
tions using Riccati equations can be found in [14], [15],
and references therein. Similar approaches, based on model
predictive control, which can be interpreted as a relaxed
version of dynamic programming, have been presented in
[8], [4]. Minimum time problems were first considered in
[6]. For time optimal control problems of parabolic equations
see [12], [18], [20], [23], [22], [27]. The novelty of this
article resides in the combination of HJB techniques for
the computation of time-optimal feedback controllers with
model reduction and state observation algorithms providing
thus a consistent approach for closed-loop control of infinite-
dimensional systems.
The paper is organized as follows. In Section II , the semi-
discretization of the dynamics and its reduction via Balanced
Truncation is presented. In Section III we introduce the
dynamic programming framework and a semi-Lagrangian
scheme for the solution of the resulting HJB equation. In
Section IV, we propose a Luenberger observer for state
estimation in the closed-loop implementation. Section V
reports numerical examples assessing the performance and
capabilities of the proposed approach.

II. D ISCRETIZATION AND MODEL REDUCTION

In this section, we present a semi-discretization of the
reaction-diffusion-advection equation (I.1) resulting in a
finite-dimensional dynamical system. At this level, the ap-
plication of a HJB-based approach is still unfeasible from a
computational point of view, since the PDE characterizing
the value function of the problem is posed over a state space
of the same dimension as the semi-discretization. To reduce
the dimensionality of the problem, we apply a Balanced
Truncation algorithm to the semi-discrete dynamical system.
In this way, we obtain a low-dimensional model for which
the corresponding HJB equation is numerically solvable.
The building blocks of this procedure are illustrated in Fig-
ure 1. Balanced Truncation for optimal control of evolution
equations has been considered in [24]. Classical Balanced
Truncation is limited to linear problems, but it has desirable
properties, such as stability preservation.

HJBPDE FEM discretization Balanced truncation

Fig. 1: Building blocks for the low-order optimal control problem.

To discretize (I.1) in space we use continuous, piecewise
linear finite elements. For a givenN ∈ N, let G =
{ j∆x }

N+1
j=0 , ∆x = L

N+1 , be a regular subdivision of the in-
terval[0, L]. For the corresponding standard nodal basis func-

tions {ϕi }
N
i=1, we introduce the mass matrixM ∈ R

N×N

with Mi,j = (ϕi, ϕj), the stiffness matrixK ∈ R
N×N

with Ki,j = (∂ξϕi, ∂ξϕj), and for the discretization of the
advection termD ∈ R

N×N with Di,j = (∂ξϕi, ϕj), where
(·, ·) denotes the usual inner product inL2(Ω). Further,
we define the observation matrixCN = M−1

No

χNo,NM ∈
R

No×N , No ≤ N , for matrix χNo,N ∈ R
No×N of rankNo

with entriesχNo,N
i,j ∈ { 0, 1 }, according to the observation

set Ωo and the mass matrixMNo
∈ R

No×No which we
choose according to the observed components. For the ansatz
y∆x =

∑N

i=1 yiϕi, whereyi are time-dependent nodal values
of the finite element functionsy∆x, we introduceyN =
(y1, . . . , yN)T which satisfies the semi-discrete system given
by











∂ty
N = ANyN + BNu,

yN (0) = xN ,

z = CNyN
(II.1)

for xN ∈ R
N with xN

i = (x, ϕi), and

AN = M−1 (a1K + a2D + a3M) ,

BN = M−1χN
c , [χN

c ]i = (χc, ϕi) ,

with χc the characteristic function ofΩc. Error estimates
in L2-norm for this type of semi-discrete approximation are
presented in [26].

For the convenience of the reader, we shortly recall
the basic idea of Balanced Truncation, see [25], [24]. In
the following we assume thatAN is stable,(AN ,BN) is
controllable, and(AN , CN) is observable. To simplify the
notation we drop the indexN . First, note that under the
aforementioned assumptions, there exists a controllability
GramianP and an observability GramianQ solving the
Lyapunov equations

PA+ATP = −CTC,

QAT +AQ = −BBT .

Since the Gramians are positive-definite, We can compute
their Cholesky factorsR andL, i.e.

P = RRT , Q = LLT ,

and solve the singular value decomposition ofLTR. We fix
a reduced-order model dimensionr ∈ N, and split

LTR = (U1 U2)

(

Σ1 0
0 Σ2

)(

V1

V2

)

,

with orthonormal matricesU = (U1 U2) andV = (V1 V2)
T ,

and diagonal matrices

Σ1 = diag(σ1, . . . , σr), Σ2 = diag(σr+1, . . . , σl) ,

with
σ1 ≥ · · · ≥ σr ≫ σr+1 ≥ · · · ≥ σl > 0 ,

andl = rank(LTR). The singular values ofLTR, known in
this context as Hankel singular values, provide a simultane-
ous measure of both controllability and observability energies
of the corresponding balanced state. By setting

W = LU1Σ
− 1

2

1 , S = RV1Σ
− 1

2

1



we can compute the following transformation

Ar = WTAS, Br = STB, Cr = CW ,

and obtain the reduced problem










∂ty
r = Aryr + Bru,

yr(0) = WTx,

zr = Cryr
(II.2)

with yr ∈ R
r.

For the error between the solution of the reduced model
(II.2) in comparison to the solution of the full model (II.1)
on (0,∞) there holds, see, e.g., [24],

‖zr − z‖L2(0,∞) ≤ 2(σr+1 + · · ·+ σl) ‖u‖L2(0,∞) .

This estimate gives an upper bound for the error in the
observation depending on the dimension of the reduced
model.

III. T HE DYNAMIC PROGRAMMING APPROACH

By applying a Balanced Truncation algorithm over the
semi-discrete model, we obtain a reduced dynamical system.
This leads to the following approximated minimum time
problem























min
u∈U

T, s.t.

∂ty
r = Ary + Bru ,

yr(0) = WTx,

yr(T ) ∈ T ,

(III.1)

This latter problem is solved by applying the dynamic
programming principle, which in this case is given by

T (x) = inf
u∈U

(τ + T (yx(τ, u))) (III.2)

for all x ∈ R = { x ∈ R
l | T (x) < ∞}, τ ∈ [0, T (x)) with

x 6∈ T . Hereyx(τ, u) denotes the state at timeτ for initial
statex at time zero and controlu. The DPP leads to the
following HJB equation characterizing the minimum time











H(x,DT ) = 0 in R \ T ,

T = 0 on ∂T ,

T (x) → +∞ asx → x0 ∈ ∂R

(III.3)

with Hamiltonian

H(x, p) = sup
u∈U

(−f(x, u)T p)− 1 ,

and
f(x, u) = Arx+ Bru .

Applying the Kruzkov transform

v(x) =

{

1− e−T (x) x ∈ R
1 x 6∈ R

we further obtain
{

v +H(x,Dv) = 0 in R
n \ T ,

v = 0 on ∂T .
(III.4)

In order to solve the HJB equation numerically, we apply
a semi-Lagrangian scheme following [3]; for a general
introduction to semi-Lagrangian schemes we refer to [5],
[10]. Be begin by discretizing the dynamical system in time
with stepsizeh, and apply the DPP for the discrete-time
dynamical system. Then, for spatial mesh parameterk ∈ R+,
we introduce a regular meshG = { xI | I ∈ Z

r, Ik ∈ S }
and denote the set of all multi-indicesI with xI = Ik ∈ G
by J . We restrict the computations to a domainS ⊂ R

r,
and impose an artificial Dirichlet boundary condition on∂S
which we set to the value1. The fully discretized HJB
equation then reads











































vh,k(xI) = min
u∈U

(βI[vh,k](xI + hf(xI , u))) + 1− β,

for I ∈ Jin,

vh,k(xI) = 0

for I ∈ JT ,

vh,k(xI) = 1

for I ∈ Jout
(III.5)

with β = e−h and

Jout = { I | xI + hf(xI , u) 6∈ S for anyu ∈ U } ,

JT = { I | xI ∈ T ∩ S } ,

Jin = I ∈ J \ (Jout ∪ JT ).

(III.6)

Here I[·] denotes a linear interpolation operator. Having
approximated the value function by means of the aforemen-
tioned scheme, we can recover the feedback controller for a
given statex by

u(x) = argmin
u∈U

(

βI[vh,k](x+ hf(x, u))

)

. (III.7)

This latter expression requires the knowledge of the whole
state, whereas our system considers an observation equation.
In the next section, we introduce an observer implementation
for an accurate trajectory computation.

IV. L UENBERGEROBSERVER

In order to generate a coherent link between the observa-
tion and the feedback law, it is necessary to implement a state
observer. More specifically, the approximation of system
(I.1) generates a dynamical outputz, whereas the feedback
mapping (III.7) assumes that a full knowledge of the internal
statey is available. By implementing a Luenberger observer,
we are able to circumvent this difficulty and to close the
control loop. The interplay of the observer and control blocks
is illustrated in Figure 2. The observer is built upon the
reduced order dynamics, corresponding to the “true” state
from which the feedback mapping can be computed. The
estimated statêy is governed by

{

∂tŷ = Ar ŷ + Bru+ L(Crŷ − z) ,

ŷ(0) = ŷ0,

where ŷ0 ∈ R
r and L ∈ R

r×No needs to be computed
such thatAr − LCr is asymptotically stable and with a



decay rate faster than the free system dynamicsAr. In
our particular setting, we recall thatAr is asymptotically
stable, and therefore our problem reduces to find a suitable
L which accelerates the decay of the estimation error. The
observer gives us now a corresponding state estimateŷ which
is inserted in the expression (III.7), yielding a feedback
u = u(ŷ) to be connected to the full-order system.

Plant (real system)

Initial state

HJB equation

Observer

Fig. 2: Overview over the observer mechanism

V. NUMERICAL EXAMPLES

We illustrate the application of the proposed approach and
the interplay between the different building blocks. First, we
describe specific details concerning common settings for the
numerical implementation.
System configuration and parameters.In both tests, the
physical domain corresponds toΩ = [0, 1], the operator
B is an indicator function over the subsetΩc = (0.4, 0.6),
and the observation operatorC is an indicator function over
Ωo = (0.3, 0.7) for Test 1 andΩo = Ω for Test 2. In
general, the main issue when prescribing a setting relates to
abstract controllability and observability assumptions,which
play a role in both the reduction and in the HJB step; the
aforementioned configuration has been selected in order to
fulfill these requirements. Nevertheless, we report that the
presented approach can be implemented also for point con-
trol/observation configurations. The control set corresponds
to U = [−1, 1]. Simulations are shown with the initial
conditionx(ξ) = 0.2 sin(πξ), and for a time frame of1[s].
Semi-discretization and model reduction. Semi-
discretization in space is performed with piecewise
linear finite elements. In both tests, the results were
obtained with a discretization of 200 elements in space.
The resulting large-scale system is reduced by means of
a Balanced Truncation algorithm; we use the numerical
implementation provided by the MORLAB package [1].
Hamilton-Jacobi-Bellman equation. The numerical ap-
proximation of the resulting HJB equation by means of
a semi-Lagrangian schemes follows the general guidelines
presented in the literature as in [5], [10]. The equation is
solved in a subdomain of the reduced state-space, in our
case the computational domain is given byQ = [−1, 1]3

considering only three reduced states in both tests. The state-
space discretization is given by the space parameterk =
0.025 and the pseudo-time parameterh = k/‖Ar‖, which
gives a good balance between accuracy and computation
time (as arrival points are computed in close neighborhood
of their departure). The semi-Lagrangian discretization leads

to the system (III.5) which is solved by means of a value
iteration algorithm defined upon the grid point valuesV =
{vh,k(xI)},

V n+1 = S(V n)

[S(V )]I =











































min
u∈U

(βI[V ](xI + hf(xI , u))) + 1− β,

for I ∈ Jin,

0

for I ∈ JT ,

1

for I ∈ Jout

which in our case is stopped when two consecutive iterations
hold ‖V n − V n+1‖ ≤ k2. The control setU is discretized
into 10 equidistant points. The target setT is a ball around
the origin of radiusǫ = h.
State observer and trajectory computation.The imple-
mentation of the observer, in this particular case, reducesto
determiningL ∈ R

r×r such that the eigenvalues ofAr−LCr

decay sufficiently fast compared to the system dynamics. For
this problem, we prescribe eigenvalues 10 times faster than
the slowest eigenvalues ofAr, and the initial observation
estimate is set̂y(0) = 0. For trajectory computation, at
every time step, once the current state of the system has been
estimated, the feedback rule is computed by means of (III.7),
and the system advances in time with a second-order implicit
integrator. Let us stress that, because of the computational
effort performed in the HJB step, where the value function is
computed for the whole state space of interest, the cpu time
related to trajectory and feedback computation is negligible,
as it mainly reduces to a single-node evaluation of arrival
points.

We present two numerical tests, first a purely reaction-
diffusion model, and in a further step we also include
advective effects.

A. Test 1: reaction-diffusion

In this first test we set for the free-dynamics operator
a1 = 0.05, a2 = 0, and a3 = 0.1, i.e., advection is
not considered. The resulting reaction-diffusion system is
exponentially stable, and thus our control goal reduces to
achieve faster regulation of the initial state to the origin.
After discretizing the system in space by finite elements
we balance the resulting large-scale system. Figure 3 shows
the evolution of the Hankel singular values in balanced
coordinates; the error of the truncation step is governed by
the largest Hankel singular value which has been neglected,
and in our case, to consider 3 reduced states leads to an
acceptable error. Note that this figure also assess our choice
of Balanced Truncation for the reduction procedure, as the
fast decay of the singular values is fundamental if a good
approximation with a few number of states is required. For a
system with 3 reduced states, computation time of the HJB
step is of approximately 50 seconds. CPU time increases
dramatically for high-dimensional problems, however, by
using accelerated iterative algorithms as in [3], it is possible
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Fig. 3: Test 1 (without advection). Decay of the Hankel singular
values in balanced coordinates.
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Fig. 4: Test 1 (without advection). Value function: cut atx3 = 0.

to solve similar problems in four dimensions in the same
amount of time, and to keep a cpu time for five dimensional
problems on the order of 10 minutes (for coarse meshes).
The next step is illustrated in Figure 4, where the value
function obtained via the DPP approach is shown. Such
value function shape often appears in minimum time control
of stable linear systems, and is related to switching curves
splitting the associated control space into a discrete number
of sets, i.e., a bang-bang type of control.
Dynamical response of the system is presented in Figures 5
and 6, where the performance of the minimum time con-
troller can be observed compared to the free dynamics, the
fast decay of the estimation error, and the respective control
signal, which emulates the expected bang-bang behavior.
Differences with an exact bang-bang controller, namely the
chattering after the first switching, are observed due to the
approximate character of the discrete HJB equation and the
computation of trajectories over a discrete state-space grid
(where switching curves are also approximated), which is
a natural limitation of discrete dynamic programming-based
approaches. Aiming at a more realistic online implementa-
tion, in [11], the authors have considered anℓ-1 penalized
minimum time problems where the bang-bang structure is
replaced by a bang-zero-bang behavior which reduces chat-
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Fig. 5: Test 1 (without advection). Dynamical response of the
system. Top: Free-system dynamics (position v/s time). Bottom:
Full-order controlled dynamics with reduced-order, minimum time
controller.

tering in a considerable way. The controller exhibits a good
behavior with respect to output noise (we consider a white
noise amplified up to a 30% of the maximum output value),
despite the assignment of fast poles for the observer. This
is due to the bang-bang structure of the system, where only
strong enough output perturbations will cause an estimate to
be located on the other side of a given switching surface.

B. Test 2: advection-diffusion-reaction

We perform a second test including advective effects; we
set a1 = 0.05, a2 = 1.0, and a3 = 0.1. Note that despite
the inclusion of an advective term, such a setting does not
deteriorate the stability properties of the original continuous
system. A first difference with respect to the previous test
can be observed in Figure 7, where it can be seen that the
scaling of the decay of the Hankel singular values change,
thus suggesting that a larger number of reduced states should
be considered for a similar level of accuracy as in the
previous example. However, in this test, we will consider
three reduced states, as the error associated to the fourth
singular value is still within an acceptable range.

The approximation of the associated HJB equation is
illustrated in Figure 8, where a cut of the value function along
x3 = 0 is shown. The dynamic response of the controlled
system is presented in Figures 9 and 10. In Figure 9, it can
be seen that although the presence of advection translates
into a regulation of the state in finite time, there is a
considerable improvement in the performance of the system
when a minimum time controller is considered, as both
advection and regulation via the control action are combined.
In this test case we assume full observation of the state, i.e.
our estimation error is uniquely related to the guess of the
initial condition ŷ(0). Note that, although there is a decay
in the estimation error, the effect of advection can be clearly
observed in Figure 10. Finally, in a similar way as in the
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Fig. 6: Test 1 (without advection). Dynamical response of the
system. Dynamic discrepancy between internal state of the system
and its estimate, and control signal. Tests without noise and with
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in balanced coordinates.
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Top: Free-system dynamics (position v/s time). Bottom: Full-order
controlled dynamics with reduced-order, minimum time controller.

previous example, Figure 10 shows an approximate bang-
bang control signal, with inaccuracies due to the discrete
resolution of the HJB equation.

VI. CONCLUDING REMARKS

We have presented a computationally feasible framework
for the implementation of approximate feedback controls in
infinite-dimensional systems. Our proposed approach con-
sists in three main steps: semi-discretization and model order
reduction of the abstract system dynamics, the application
of DPP techniques in order to achieve a characterization
of the value function for the lower dimensional optimal
control problem, and the implementation of a state observer
in order to close the control loop. Every block has a solid
computational framework where different numerical methods
are available. Our results suggest that the approach is able
to yield reasonably robust controllers (in the sense that they
can perform well when connected to the large-scale, semi-
discrete dynamics), already with a reduced number of states.
The proposed approach is flexible as it supports variations in
the application of reduction techniques, the optimal feedback
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Fig. 10: Test 2 (with advection). Dynamical response of the system.
Top: Dynamic discrepancy between internal state of the system and
its estimate. Bottom: Control signal.

to be sought, the type of observer considered, and thereforeit
can be used for a wide class of dynamics and control design
problems.
Future extensions of this work shall address the formulation
of a precise error quantification connecting the different
approximation errors introduced in every step, as also a
precise characterization of the robustness properties observed
in the numerical essays.
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