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Abstract 

The relaxation of a plasma grating resulting from the interference of two crossing laser 

filaments in molecular and atomic gases is studied experimentally. Dissipation of the grating 

fringes is dominated by ambipolar diffusion in atomic gases and by a combination of 

ambipolar diffusion and collision-assisted free electron recombination in molecular gases. A 

theoretical model of the grating evolution is developed and compared to experimental results. 

Good agreement with simulations allows extracting plasma properties such as electron 

density, diffusion and recombination coefficients in Ne, Ar, Kr, Xe, N2, O2, CO2 and air at 

atmospheric pressure. 
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1. Introduction 

Femtosecond laser filamentation has raised much interest in the last decade in various 

domains of applied physics such as guiding electric discharges [1, 2], atmospheric monitoring 

through LIDAR technique [3], THz generation [4], white-light continuum generation [5] or 

virtual radiofrequency antenna [6]. Resulting from a dynamic competition between the Kerr 

effect and plasma defocusing, filamentation appears spontaneously during the propagation of 

an intense femtosecond laser pulse, provided the initial peak power exceeds a threshold value 

Pcr (a few GW in gases). An intensity reaching 5×10
13

 W/cm
2
 in air is maintained in the core 

of the beam over an extended length, producing a long string of plasma in the wake of the 

pulse [7]. In order to remotely control the filamentation process for long range applications, 

much attention has been given to intersecting filaments by another femtosecond laser pulse. In 

the intersection region, interference of the two pulses gives rise to a plasma grating [8-10]. 

Recent studies have highlighted the role of the grating as a way to manipulate femtosecond 

pulses: energy exchange [10-12], interruption of filament [13-15] or redirection of a third 

beam [16, 17]. Measurements of the plasma density as well as the relaxation process of the 

plasma grating are crucial for the understanding of the phenomenon. In a recent article we 

reported first results concerning the experimental characterization of the plasma grating decay 

in several molecular and atomic gases [18]. 

In this manuscript we present the complete theoretical model and the experimental 

results allowing describing the plasma dynamics in the laser induced grating for all studied 

gases. We demonstrate that the plasma fringes are washed out by the ambipolar diffusion in 

atomic gases and by a combination of the ambipolar diffusion and collision-assisted free 

electron recombination in molecular gases. A theoretical model based on a Bragg diffraction 

is developed to interpret the experimental results. Data are fitted by the model, allowing 

extraction of the plasma properties such as the free electron density, diffusion and 
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recombination coefficients in Ne, Ar, Kr, Xe, N2, O2, CO2 and air. Some of these parameters 

were already measured several years ago but for a very low gas pressure and in a fully ionized 

plasma [19-21]. The recombination coefficient for air was also estimated and measured in the 

case of single filament, showing discrepancy between different values obtained [22-24]. In the 

present study we measured these quantities at atmospheric pressure in a weakly ionized gas.  

The outline of this paper is the following: first, we study in Sec. 2 the plasma by using 

temporally resolved in-line diffractometry measurements to determine the initial plasma 

density and the recombination coefficient of the filament in the crossing area. Due to the laser 

field interference, this density is higher than the density in single filaments, and needs to be 

evaluated. We then elaborate in Sec. 3 a theoretical model describing the relaxation of the 

grating. We finally study the decay of grating using a pump-probe experiment. Best fits 

between calculations and experimental results yield the initial free electron density, its time 

evolution as well as the diffusion coefficient in all studied gases.  

 

2. Study of the plasma relaxation 
2.1. Experimental set-up 

We used in the experiment a chirped pulse amplified (CPA) femtosecond laser system 

delivering 50 fs pulses at 800 nm with a maximum energy of 15 mJ at a repetition rate of 100 

Hz. At the output of the CPA system the laser beam has a Gaussian spatial intensity 

distribution with a diameter of 14 mm. The output pulse is split into three beams by two 

sequential beam splitters (10%/90% and 50%/50%). Two pump laser pulses of 1 mJ with a 

vertical polarization are focused with a 1000 mm focal lens in a cell containing the gas at 

atmospheric pressure, where they form two filaments. A plasma grating is formed in the 

intersection region (see details in Refs. [17, 18]). Measurements were performed in air, O2, 

N2, CO2, Ne, Ar, Kr and Xe.  

In this first experiment, an unfocused weak probe beam is used to illuminate the 

plasma grating (Fig. 1). The probe beam is sent transversely through the plasma. Since it 

propagates perpendicularly to the plane containing the fringes, it is only sensitive to the global 

phase object it traverses, but not to the plasma density modulation. The probe can be delayed 

with respect to the plasma formation time to record the temporal evolution of the diffraction 

pattern caused by the plasma bubble. We used a CMOS camera (uEYE UI-1240SE) placed at 

the distance H = 38 cm away from the plasma grating. A similar in-line diffractometry 

method has already been used in Refs. [24-26] to determine the temporal evolution of the 

plasma electron density in the case of a single filament produced in air.  

 

2.2. Calculation of probe diffraction by a plasma bubble  

The plasma electron density evolution was calculated from the diffractometry 

measurement of the probe beam. The plasma bubble produced at the intersection of the two 

filaments induces a change of refractive index  on the path of the probe beam. The plasma 

refractive index reads        
    , where               is the plasma frequency, 

 is the laser angular frequency, 0 is the vacuum permittivity, e is the elementary charge, me 

is the electron mass and e is the electron plasma density. The ratio   
       is small, so 

the variation of the plasma refractive index is directly proportional to e: 

    
   

    

    
   

   
       (1) 

where c =1.7×10
21

 cm
-3

 is the electron critical density at 800 nm. Based on the crossing 

geometry of two filamentary beams, we assume a super-Gaussian plasma density profile 

along x direction and a Gaussian profile along z direction with characteristic lengths L1 and 

L2. Due to geometric considerations we expect L2 to be slightly larger than L1. Then the 
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change of refractive index in the interaction area can be described as 

                 
  

   
  

 

  
  

   
        (2) 

where n0 is the maximum variation of the index at the center of plasma and a is the super 

Gaussian order. Then the phase shift due to the probe beam propagation through the plasma 

reads 

                                 
  

   
  

 

      (3) 

Assuming that the probe beam has a Gaussian spatial profile                     
   

with a width w0 ~7 mm, the amplitude of diffracted wave at the distance H from the plasma is 

expressed as follows: 

          
 

  
                 

   

   
  

  

  
            (4) 

The expression above provides a relation between the plasma electron density and the 

diffraction pattern of the probe intensity               . 

The temporal evolution of the probe diffraction pattern provides information on the 

plasma relaxation. It is governed by two phenomena: the free carrier diffusion and 

recombination. In a plasma created by filamentation, the degree of ionization is rather low and 

the electron recombination is based on two distinct processes: the recombination on parent 

ions and attachment to neutral atoms. Zhou et al. [27] demonstrated that in gases the first 

process is faster. The electron diffusion could be important over a distance of a few microns, 

comparable to the electron mean free path, but it can be neglected on the plasma scale of a 

few tens of microns. Consequently, the decay of the electron plasma density from the initial 

value can be expressed as [24]         
 

  
     (5). The electron recombination 

coefficient  can be found from the contrast of the fringes as the ratio         , where I0 is 

the background intensity and         is the difference of the probe beam intensity with 

and without the plasma. 

 

2.3. Experimental results and discussion 

Fig. 2 presents an image obtained from the diffraction of the probe beam by the 

plasma bubble in air. Two images have been recorded: the probe transmitted though the 

plasma (a) and the background without plasma (b). The pictures shown in Fig. 2(a) and 2(b) 

were taken when the probe beam was sent  = 1.13 ps after the formation of the plasma 

grating. After subtraction of the background we obtain the diffraction pattern shown in Fig. 

2(c). The x-profile of the fringes extracted from Fig. 2(c) along the y position where the 

fringes are at their maximum is shown in Fig. 2(d). The contrast is calculated by dividing the 

profile by the maximum value of the background taken at the same coordinate y. These 

measurements were performed for different gases as a function of the delay between the probe 

beam and the formation of the plasma. The contrast extraction procedure was routinely 

repeated for each delay .  
The calculated fringe profile is best fitted to the experimental one (see Fig. 3) through 

adjustable parameters a, L1 and L2 that characterize the shape of the plasma bubble. For all 

gases it was found a = 2, L1 = 40 µm and L2 = 90 µm, except for Xenon for which L1 = 80 

µm. Once the plasma shape is fixed, the maximum contrast is linked to the electron density 

e. We considered here only the real part of the refractive index n0. By adding a complex 

part related to absorption one could improve the fit of the central fringe at x = 0.  

The model allows retrieving from the maximum fringe contrast          the plasma 

density evolution. The fringe contrasts for each delay  measured experimentally and fitted by 
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Eq. (5) are reported in Fig. 4 for all gases studied. The striking result is a significant 

difference in the electron relaxation times in the molecular and atomic gases. The relaxation 

time in the diatomic gases is less than 100 ps, which is radically different from the atomic 

gases, where the electron lifetime exceeds 1 ns. A very slow plasma decay in the case of 

argon is explained by the fact that the electron recombination proceeds through the long lived 

Rydberg states [28] with a very low ionization potential. It is possible that in our experiment 

the intensity of the probe is sufficient to re-ionize the Argon atoms in Rydberg states, which 

would explain the longevity of the plasma grating in this case.  

One can see that measurements can be well fitted using this equation. The inverse 

dependence of the plasma density with time is indeed confirmed experimentally. The 

maximum at  = 0 gives the initial density of the plasma 0 and the decay rate gives the 

recombination coefficient . The values shown in Table 1 are consistent with the data from 

Refs. [26, 29, 30]. 

The electron recombination could occur through several mechanisms in the filament 

plasma: the direct radiative electron-ion recombination, collision-assisted electron-ion 

recombination and, for molecules, the dissociative recombination. The direct radiative 

electron-ion recombination is an intrinsic property of the atom or molecule, which does not 

depend on the gas temperature or pressure. Its characteristic time is in the range of a few 

hundred ns, much longer than the decay times measured here. The dissociative recombination 

process corresponds to a collision of an electron with a molecular ion resulting in two neutral 

atoms, e + X2
+
 → X + X. The corresponding cross-section could be as high as 10

-13
 – 10

-14
 

cm
2
 at room temperature, but it decreases by 2 – 3 orders of magnitude for the electron 

temperature Te ~ 1 – 10 eV [31]. Thus it also leads to a recombination time in the nanosecond 

scale, which is inconsistent with the observations. The last process is the three body 

recombination where the electron-ion recombination is assisted by a neutral atom or 

molecule: e + X
+
 + X → X + X. Assuming the electron density e of the order of 10

17
 cm

-3 

and the neutral density at = 2.7×10
19

 cm
-3

, the collision-assisted recombination time is in the 

sub-nanosecond range, and it dominates under our experimental conditions.  

Several authors have discussed the decay of plasma generated by laser filamentation in 

air in terms of the collision-assisted recombination [24, 25]. The coefficient  = Kat is 

proportional to the density of neutrals. The constant K was previously determined at low gas 

pressures and at the normal temperature 300 K for a few gases: for Helium K ~ 10
-26

 – 10
-27

 

cm
6
/s [19], for Oxygen K ~ 10

-30
 cm

6
/s [20] and for Neon K ~ 10

-27
 cm

6
/s [21]. The laser 

filament crossing experiment provides the possibility to evaluate K for several gases at higher 

electron temperatures and at the atmospheric pressure. The results are reported in Table 1. For 

every gas the initial electron density is of the order of 10
17

 – 10
18

 cm
-3

. This value is in 

agreement with simulations using the PPT (Perelomov, Popov and Terent’ev) model of multi-

photon ionization [32], under the assumption of a complete interference between the two 

crossing laser fields and a filament intensity for each gas taken from ref. [33]. 

 

 Air N2 O2 CO2 Ne Ar Kr Xe 

0 (cm-3) 1×1018 1×1018 1×1018 9×1017 7×1017 3×1018 2×1018 9×1017 
 (cm3/s) 5×10-8 3×10-8 4×10-8 2×10-7 6×10-9 2×10-10 1×10-9 2×10-9 
K (cm6/s) 2×10-27 1×10-27 2×10-27 7×10-27 2×10-28 7×10-30 4×10-29 6×10-29 

Table 1: Plasma parameters determined by diffractometry technique. The parameters 0 and  were obtained 

from best fitting the fringe contrast and its decay in time. The constant K was calculated using the relation  = 

Kat. 
 

Relying on these measurements we are now in a position to determine the 
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characteristics of the plasma generated from the interference of two laser filaments in 

different gases. The extracted values of the peak densities and the recombination constants 

will be used as starting parameters for the analysis of the temporal evolution of the plasma 

grating.  

 

3. Study of the plasma grating 
3.1. Experimental set-up 

The experimental set-up is presented in Fig. 5. The plasma grating is generated 

similarly to the previous experiment. A weaker third probe beam at the frequency 2, this 

time collinear with one of the filament forming pulse, is diffracted by the grating in the 

direction of the other filament. In order to satisfy the Bragg condition, the second harmonic 

probe beam is diffracted by the second order anharmonic term of the grating profile. The 

diffraction efficiency of the grating is measured as a function of the time delay  between the 

probe beam and the formation time of the grating. The experiment was performed for three 

configurations  = 7, 14 and 90°. A photodiode was used to measure the diffracted probe 

beam. From these measurements, the parameters of the plasma decay, the electron diffusion 

and the electron recombination, can be retrieved. 

 

3.2. Theoretical model 
The goal of this part is to provide a model for interpretation of the experimental data 

concerning the lifetime of the plasma grating. We consider two optical beams crossing at an 

angle  in the (y, z) plane. The electric field related to two overlapping waves can be 

expressed as (see scheme in Fig. 6): 

                   
 

 
       

 

 
              

 

 
       

 

 
   (6) 

The interference pattern is defined by the intensity                  that presents the 

periodic modulations along z-axis with the wave vector        
 

 
     , where  is the 

fringe spacing of the grating. For our calculations we assume that amplitudes of both 

filamentary beams, A1 and A2 are equal.  

During the filamentation process, a laser pulse of a duration tp leaves in its trail a thin, 

weakly ionized plasma channel. The peak plasma density can be estimated from the equation 

         
           (7) 

where M is the coefficient of M-photon ionization with the integer M depending on the gas 

characteristics and the ionization regime – multi-photon or tunnel, according to the Keldysh-

PPT model. In the present case, we are interested in the maximum electron density obtained 

from the constructive interferences of the two intercepting filaments. For each gas studied, the 

ionization regime was defined according to Refs. [7, 34] and the values of the parameter M 

are presented in Table 2. 

 

 Air N2 O2 CO2 Ne Ar Kr Xe 

M 5 7 5 5 5 5 4 4 
Table 2: Number of photons needed in the ionization process according to the Keldish-PPT model. 

 

According to Eqs. (6) and (7), the plasma density is proportional by the M-th power of the 

interference field: 

                       (8) 

with 0 the maximum electron density in the plasma grating. Among the two phenomena that 

are responsible for the relaxation of the plasma grating, the electron recombination was 

considered in the previous section. To evaluate the role of the second process, the electron 
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diffusion, we consider the characteristic spatial scales of the problem. For the electron density 

in plasma ~ 10
18

 cm
-3

 and the electron temperature of a few electron-volts, the electron Debye 

length D is about 0.07 m and the electron mean free path en is approximately 0.15 m. 

Both of them are smaller than the grating period  that is in the range from 0.6 to 6 µm. 

Consequently, the diffusion is not controlled by electrons, but is associated to their parent ion 

mobility. It is known as the ambipolar diffusion [35], whose coefficient reads as   
           , where Ti is the ion temperature,             is the ion diffusion coefficient, 

kB is the Boltzmann constant and i is the ion mobility. Under these assumptions, the temporal 

evolution of the electron plasma density obeys the partial differential equation:  
   

  
  

    

   
    

        (9) 

where the first term in the right hand side describes the electron diffusion along the plasma 

modulation direction. The initial condition to this equation is given by expression (7). It 

contains the main grating period  and its harmonics /n with n ≤ M: 

                    
 
        (10) 

thus leading to a system of M-coupled differential equations for the electron density 

harmonics n, which have been solved numerically. 

The lifetime of the plasma grating is measured by the probe beam operating at the 

second harmonic 2According to the Bragg condition, the diffraction efficiency is 

proportional to the amplitude of the second harmonic of the grating 2. The principle is 

schematized in Fig. 7. After solving the M-coupled differential equations (9), we retain only 

two terms in the electron density while solving the Helmholtz equation for the probe beam. 

Then, according to Eqs. (1) and (10), the plasma refraction index reads: 

   
   

      
 

  

      
             (11) 

Correspondingly, the field of the probe beam splits into the transmitted 0 and diffracted r 

waves: 

                    
 

 
        

 

 
               

 

 
        

 

 
   (12) 

The amplitudes of these two waves are described by two differential equations: 

    
 

 
 
   

  
   

   

     
    

   

      
       

 

 
 
   

  
   

   

     
    

   

      
     (13) 

with the boundary conditions corresponding to the incident fundamental wave, 0 (0) = A0, 

and to the absence of the diffracted wave, R (0) = 0. For a grating size L2 less than one 

hundred microns one can neglect the probe wave depletion, and assuming 0 to be constant, 

solve the equation for the diffracted wave only. Then, one obtains a simple expression for the 

reflected intensity 

    
     

         
 

 

 
 

            (14) 

Thus, IR depends on the second harmonic of the grating amplitude 2, which follows an 

evolution ruled by Eq. (9). By measuring and fitting the decay of the reflected intensity we 

can determine experimentally the values D and . The characteristics of the plasma 

determined in Sec. 2 served as initial conditions in the simulations. The temporal evolution of 

the plasma grating and the characteristic electron densities in air are shown in Fig. 8 for 

relevant parameters. The average electron density decreases with time relatively slowly, 

approximately by a factor 2 in 40 ps, which is consistent with the result presented for air in 

Fig. 4. The grating amplitudes corresponding to the main and the second harmonic decrease 

faster: the main harmonic decreases by a factor 2 in 30 ps while the second harmonic requires 

less than 20 ps.  
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3.3. Experimental results and discussion 

Fig. 9
1
 shows the intensity of the probe beam diffracted by the grating as a function of 

time in molecular and atomic gases for three angles . In all atomic gases, there is a strong 

dependence of the signal diffracted with the angle . It decreases with increasing crossing 

angle as experimentally shown in [8, 17]. It can be explained by the fringe spacing . A 

smaller grating period leads to a reduction of the time necessary for a diffusive wash out of 

the fringe pattern. One can note that the lifetime of the grating is much shorter than the 

plasma recombination time measured in Fig. 4 for the same gas. We can then conclude that in 

atomic gases the role of recombination in the grating dynamics is negligible compared to 

ambipolar diffusion. On the contrary, in molecular gases, the plasma recombination time is 

comparable to the relaxation time of the grating, so that both the recombination and the 

diffusion play a role in the grating relaxation. In each gas, the three experimental curves are 

fitted with one set of parameters ρ0,  and D. The numerical fitting procedure is restrictive, 

since for a same set of parameters 0 and , the time dependence of the plasma and grating 

decay must be reproduced. The retrieved parameters ρ0,  and D from this calculation are 

presented in Table 3. The coefficients Dam correspond to the calculated ambipolar diffusion 

coefficient, with i from Refs. [35, 36], for Ti = 300 K (room temperature) and Te = 0.5 eV 

[37]. The diffusion coefficients D obtained from our experiment are in good agreement with 

calculated values. The value of the electron recombination coefficient of air is consistent with 

the experiment performed with a single filament [24, 25]. Values of the diffusion coefficient 

have not been measured before in this range of pressure and temperature.  

 

 Air N2 O2 CO2 Ne Ar Kr Xe 

         
  

  
  (cm2/s) 0.7 0.9 1.2 0.4 2.2 0.8 0.5 0.3 

D (cm2/s) 0.6 0.6 1.1 0.4 1 0.8 0.5 0.3 
0 (cm-3) 1×1018 1×1018 1×1018 1×1018 7×1017 4×1018 2×1018 9×1017 
 (cm3/s) 5×10-8 4×10-8 4×10-8 2×10-7 8×10-9 2×10-10 5×10-10 2×10-9 

Table 3: Plasma characteristics determined experimentally. The same set of parameters D, 0 and  is 
obtained from best fitting the plasma and the grating decay for each gas. The first line presents the calculated 

value of the diffusion with i taken from Refs. [35, 36]. 
 

4. Conclusions 

We have fully characterized the plasma and the grating formed at the intersection of 

two crossing filaments in several atomic and molecular gases. Two processes, which are 

responsible for the plasma relaxation are identified. In atomic gases, the plasma grating 

lifetime is very sensitive to the filaments crossing angle , but not in molecular ones. 

Therefore, the dissipation of the grating is dominated by the ambipolar diffusion in atomic 

gases and by a combination of the ambipolar diffusion and the collision-assisted free electron 

recombination in molecular gases. We have elaborated a theoretical model based on the Bragg 

diffraction that describes the grating relaxation. The numerical results are in good agreement 

with the experimental observations. By combining the observations with the model we 

extracted the electron density ρ0, the recombination time  and the diffusion coefficient D in 

all tested gases. Such values have never been determined at the atmospheric pressure and the 

room temperature. Therefore, we provide a pioneering experimental technique to measure 

inherent characteristics of a specific type of plasma formed by laser filamentation. 

                                                             
1 The sharp dips observed in Air, O2 and N2  = 90° are due to spontaneous revivals of the refractive index 
which diffract the probe pulse before it reaches the grating volume. For clarity, the dips observed at other angles 

 have been removed. 
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Figure captions  

 

 

Figure 1: Experimental set-up of the in-line diffractometry measurement. 

 

Figure 2: Recorded diffraction patterns for a delay  = 1.13 ps with respect to the plasma 

formation in air: (a) Image of the strips obtained on the camera after the probe beam has been 

diffracted by the plasma bubble; (b) Spatial profile of the probe beam without plasma bubble; 

(c) Images of fringes due to diffraction after the subtraction of the background (b); (d) x-

profile of (c) at the coordinate y where the fringes are at their maximum. 

 

Figure 3: Theoretical fit of the fringe pattern corresponding to Fig. 2(d). 

 

Figure 4: Decay of the experimental (black dots) and fitted (red open circles) diffraction 

contrast extracted from Fig. 3 as a function of the delay .  
 

Figure 5: Experimental set-up for measuring of the plasma grating lifetime 

 

Figure 6: Schematic representation of two plane waves of same wavelength  crossing with 

an angle . The black lines represent the grating formed at the intersection. 

 

Figure 7: Schematic of the reflection of the 2 probe beam by the plasma grating. 

 

Figure 8: (a) Temporal evolution of one period of the plasma density grating for the following 

set of parameters:  = 0.8 m,  = 14°, Dam = 1 cm
2
/s,  = 5.10

-8
 cm

2
/s and 0 = 10

18
 cm

-3
. (b) 

Left axis – temporal evolution of the average density (circle), the first (square) and the second 

(solid line) harmonics of the grating. Initially the fringe maxima are 4 times above the average 

density for M = 5. Right axis – reflected intensity of the 2 probe beam on the grating (dash 

line).  

 

Figure 9: Normalized intensity of diffracted probe signal as a function of the delay  (ps) for 

crossing angles  of 7°, 14° and 90°. Measures are represented by dots. Calculations are 

represented by solid lines. 

 


