HAL CCSD
Lyapunov exponents from experimental time series. Application to cymbal vibrations
Touzé, Cyril
Chaigne, Antoine
Unité de Mécanique (UME) ; École Nationale Supérieure de Techniques Avancées (ENSTA Paris)
International audience
ISSN: 1610-1928
EISSN: 1861-9959
Acta Acustica united with Acustica
Hirzel Verlag
hal-01134813
https://hal-ensta-paris.archives-ouvertes.fr/hal-01134813
https://hal-ensta-paris.archives-ouvertes.fr/hal-01134813/document
https://hal-ensta-paris.archives-ouvertes.fr/hal-01134813/file/CTACL.pdf
https://hal-ensta-paris.archives-ouvertes.fr/hal-01134813
Acta Acustica united with Acustica, 2000, 86 (3), pp.557-567
http://www.ingentaconnect.com/contentone/dav/aaua/2000/00000086/00000003/art00019#Supp
en
[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]
[PHYS.MECA.ACOU]Physics [physics]/Mechanics [physics]/Acoustics [physics.class-ph]
[SPI.MECA.VIBR]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Vibrations [physics.class-ph]
info:eu-repo/semantics/article
Journal articles
Lyapunov exponents are among the most relevant and most informative invariants for detecting and quantifying chaos in a dynamical system. This method is applied here to the analysis of cymbal vibrations. The advantage of using a quadratic fit for determining the Jacobian of the dynamics is presented. In addition, the interest of using a time step for the evolution of the neighbourhood not equal to the timelag used for the reconstruction of the phase space is underlined. The robustness of the algorithm used yields a high degree of confidence in the characterization and in the quantification of the chaotic state.To illustrate these features in the case of cymbal vibrations, transitions from quasiperiodicity to chaos are exhibited. The quasiperiodic state of the system is characterized together by the power spectrum of the experimental signal and by calculation of the Lyapunov spectrum.
2000
info:eu-repo/semantics/OpenAccess